
1

Program termination · Lecture 4

Berkeley · Spring ’09

Byron Cook

2

Outline

Fair termination

Data structures

Concurrency

Conclusion

3

Proving liveness properties

Only pure termination considered (until now)

Liveness vs. safety

� Safety properties always have a finite counterexample

� Example: “Every Release() is proceeded by Acquire()”

� Liveness properties may have only infinite counterexamples

� Example: “Every Acquire() is followed by Release()”

Termination is the most basic liveness property

� Other liveness properties are like termination with certain
counterexamples removed

4

Proving liveness properties

Only pure termination considered (until now)

Liveness vs. safety

� Safety properties always have a finite counterexample

� Example: “Every Release() is proceeded by Acquire()”

� Liveness properties may have only infinite counterexamples

� Example: “Every Acquire() is followed by Release()”

Termination is the most basic liveness property

� Other liveness properties are like termination with certain
counterexamples removed

5

Proving liveness properties

Only pure termination considered (until now)

Liveness vs. safety

� Safety properties always have a finite counterexample

� Example: “Every Release() is proceeded by Acquire()”

� Liveness properties may have only infinite counterexamples

� Example: “Every Acquire() is followed by Release()”

Termination is the most basic liveness property

� Other liveness properties are like termination with certain
counterexamples removed

6

Proving liveness properties

Only pure termination considered (until now)

Liveness vs. safety

� Safety properties always have a finite counterexample

� Example: “Every Release() is proceeded by Acquire()”

� Liveness properties may have only infinite counterexamples

� Example: “Every Acquire() is followed by Release()”

Termination is the most basic liveness property

� Other liveness properties are like termination with certain
counterexamples removed

7

Specifying liveness properties

Automata on finite/infinite words

� Good for programmers/testers, as they look like programs

� Difficult to compose, reason about

� Usually more expressive

� More common in industrial applications

� Examples: PSL, SLIC, ForSpec, ………..

Temporal logics

� Difficult for programmers/testers

� Easy to compose using logical operators

8

Example: SLIC

SLIC: SLAM’s specification language
� Automata over finite words of program counters (safety properties)

� Infinite words not considered

Function entry / exit
� Automata triggers limited to those of function entry / exit

Failing words marked with calls to “error()” in transfer
functions:

IoCallDriver.entry {

if ($2->Tail.Overlay.Sl->MajorFunction==IRP_MJ_POWER) {

error();

}

}

Implemented as a transformation to reachability

9

state { int l = 0; }

AcquireLock.entry

{

if (l==1) {

error();

} else {

l=1;

}

}

ReleaseLock.entry

{

if (l==0) {

error();

} else {

l=0;

}

}

Example: SLIC

int l = 0;

if (l==1) {

error();

} else {

l=1;

}

if (l==0) {

error();

} else {

l=0;

}

void AcquireLock()

{

……………

}

void ReleaseLock()

{

……………

}

void main()

{

……………

void AcquireLock()

{

………………

}

void ReleaseLock()

{

………………

}

void main()

{

……………

Are these

reachable?

10

11

12

13

Extending SLIC with liveness properties

To extend SLIC with support for liveness we

� Change acceptance condition to consider infinite traces

� Add fairness constraints

� Unfair infinite traces are not accepted

� Fair infinite traces are accepted

Fair termination

� Weak fairness = Buchi acceptance conditions = “justice”

� Strong fairness = Streett/Rabin acceptance conditions =
“compassion”

14

Proving liveness properties

Fairness constraints remove classes of
counterexamples from consideration

� The program doesn’t terminate, but terminates if certain
paths are ignored

� Fairness constraints describe those traces

15

Proving liveness properties

Fairness constraints remove classes of
counterexamples from consideration

� The program doesn’t terminate, but terminates if certain
paths are ignored

� Fairness constraints describe those traces

16

Proving liveness properties

Fairness constraints remove classes of
counterexamples from consideration

� The program doesn’t terminate, but terminates if certain
paths are ignored

� Fairness constraints describe those traces

17

Proving liveness properties

Fairness constraints remove classes of
counterexamples from consideration

� The program doesn’t terminate, but terminates if certain
paths are ignored

� Fairness constraints describe those traces

18

Proving liveness properties

Fairness constraints remove classes of
counterexamples from consideration

� The program doesn’t terminate, but terminates if certain
paths are ignored

� Fairness constraints describe those traces

19

Strong fairness

Fair and unfair traces:

20

Strong fairness

Fair and unfair traces:

21

Strong fairness

Fair and unfair traces:

22

Strong fairness

Fair and unfair traces:

23

Strong fairness

Fair and unfair traces:

24

Eliminating unfair paths

25

Eliminating unfair paths

26

Eliminating unfair paths

27

Eliminating unfair paths

28

Eliminating unfair paths

29

Eliminating unfair paths

30

Eliminating unfair paths

31

Eliminating unfair paths

32

Eliminating unfair paths

33

Eliminating unfair paths

34

Eliminating unfair paths

35

Eliminating unfair paths

36

Eliminating unfair paths

37

Eliminating unfair paths

Strategy: variables help to track unfair vs. fair paths

Unfair paths lead trimmed out with use of assume or
with constraints that make them well founded

Termination proof is performed over the new
program

� Reachability-based approach: introduce extra variables into
the translation

� Invariance analysis: need only consider case where starting
state is any reachable head of a fair path

� Induction-based approach: …………………?

38

if (s==NONE) {

if (nondet()) {

s=PENDING;

}

}

if (s==PENDING) {

assume(false);

}

s=NONE;

AcquireLock.entry

{

if (s==NONE) {

if (nondet()) {

s=PENDING;

}

}

}

ReleaseLock.entry

{

if (s==PENDING) {

assume(false)

}

}

main.entry {

s=NONE;

}

Expressing fairness

void f()

{ .

AcquireLock();

.

.

.

.

.

.

.

.

.

.

.

ReleaseLock();

.

.

.

.

.

.

.

}

void main()

{

……………

void f()

{

AcquireLock();

.

.

.

.

.

ReleaseLock();

.

.

}

void main()

{

fairness {

any { 1 }

any { q==PENDING }

}

39

Outline

40

Outline

41

Outline

42

Liveness property library

43

Liveness property library

44

Liveness property library

45

Transformation to reachability for fair termination

46

if (*) {

assume(set==1);

assume(!inS || inT);

assert(M);

} else if (*) {

set = 1;

inS = 0;

inT = 0;

‘x = x;

‘y = y;

.

.

}

body

}

while(……) {

Transformation to reachability for fair termination

Add the following at each

command in the program:
• if (S) inS=1;

• if (T) inT=1;

Initialization:
• inS = 0;

• inT = 0;

• set = 0;

47

48

49

Outline

Fair termination

Data structures

Concurrency

Conclusion

50

Introduction

51

Termination of programs with heap

Where to get the termination argument?

� Over changing delta in the heap shapes?

� Over values stored in heap?

Current approaches:

� Finding abstractions of heap shapes expressed in arithmetic

� New variables introduced track sizes of data structures

� Proving termination over abstractions using arithmetic
techniques

Approach used here:

� Perform separation logic based shape analysis

� If memory safety proved, then we produce abstraction

� Arithmetic techniques to prove termination of abstraction

52

Separation logic based shape analysis

Shape analysis: abstract interpretation for
programs with heap

� Goal: to prove memory safety

� To prove memory safety you need to know A LOT
about the shape of memory

� Thus, we get other properties about the heap-
shapes constructed during execution

� Example: “at line 35 x is a pointer to a well-formed
cyclic doubly-linked list”

53

Separation logic based shape analysis

Separation logic

� Classical logic (quantifiers, conjunction, etc)

� Extension:

� : “The heaplet is empty”

� : “The heaplet has exactly one cell
x, holding a record with field f=y and field d=5.”

� : “The heaplet can be divided so A is true of
exactly one partition, and B is true of the other”

� Induction definitions

54

Separation logic based shape analysis

Separation logic

� Classical logic (quantifers, conjunction, etc)

� Extension:

� : “The heaplet is empty”

� : “The heaplet has exactly one cell
x, holding a record with field f=y and field d=5.”

� : “The heaplet can be divided so A is true of
exactly one partition, and B is true of the other”

� Induction definitions

55

Separation logic based shape analysis

Separation logic

� Classical logic (quantifers, conjunction, etc)

� Extension:

� emp: “The heaplet is empty”

� x |-> f:y,d:5: “The heaplet has exactly one cell x,
holding a record with field f=y and field d=5.”

� A * B: “The heaplet can be divided so A is true of
exactly one partition, and B is true of the other”

� Induction definitions using emp, |->, *

56

Separation logic based shape analysis

Cyclic lists?

�

Acyclic lists?

�

“Pan handle lists”?

�

57

Separation logic based shape analysis

Double linked lists?

Sorted lists?

Lists of lists?

Lists with back edges to head nodes?

Trees? Balanced trees?

Skiplists?

DAGs? BDDs? XXXXXXXX

��
��

��

��

��
��

58

Separation logic based shape analysis

Separation logic based shape analysis:

� Sets of *-conjuncted formulae represent abstract
heaps at program locations

� e.g. “The program’s heap when
executing the command at location consists
only of an acyclic list pointed to by x”

� Forward symbolic simulation, e.g.

59

Separation logic based shape analysis

Separation logic based shape analysis:

� Use of abstraction to improve the chance of
analysis-termination, e.g.

� Summaries for procedures, and “Frame Rule”:

�

60

Separation logic based shape analysis

61

Separation logic based shape analysis

62

Separation logic based shape analysis

63

Separation logic based shape analysis

64

Separation logic based shape analysis

65

Separation logic based shape analysis

66

Separation logic based shape analysis

67

Separation logic based shape analysis

68

Separation logic based shape analysis

69

Separation logic based shape analysis

70

Separation logic based shape analysis

71

Separation logic based shape analysis

72

Separation logic based shape analysis

73

Separation logic based shape analysis

74

Separation logic based shape analysis

75

Separation logic based shape analysis

��

76

Separation logic based shape analysis

77

Separation logic based shape analysis

78

Separation logic based shape analysis

79

Separation logic based shape analysis

XXXXXXXX

80

Separation logic based shape analysis

81

Separation logic based shape analysis

82

Separation logic based shape analysis

83

Separation logic based shape analysis

��

84

Separation logic based shape analysis

85

Separation logic based shape analysis

86

Separation logic based shape analysis

87

Separation logic based shape analysis

88

Separation logic based shape analysis

89

Separation logic based shape analysis

90

Separation logic based shape analysis

91

Separation logic based shape analysis

92

Separation logic based shape analysis

93

Outline

Fair termination

Data structures

Concurrency

Conclusion

94

Introduction

95

Introduction

96

Introduction

97

98

99

100

Multithreaded programs

101

Multithreaded programs

102

Locks

103

Thread termination

104

Thread termination

105

Thread termination

106

Thread termination

107

Thread termination

108

Thread termination

109

Thread termination

110

Thread termination

111

Abstract composition

112

Abstract composition

113

Thread invariants

114

Proving thread termination

115

Proving thread termination

116

Example

117

Example

118

Example

119

Example

120

Example

121

Example

122

Example

123

Example

124

Example

125

Example

126

Example

127

Example

128

Example

129

Example

130

Example

131

Example

132

Example

133

Example

134

Example

135

Example

136

Example

137

Example

138

Example

139

Example

140

Example

141

Example

142

Example

143

Example

144

Example

145

Example

146

Example

147

Example

148

Example

149

Example

150

Example

151

Example

152

Example

153

Example

154

Example

155

Example

156

Outline

Fair termination

Data structures

Concurrency

Conclusion

157

Conclusion

Basics: WF, ranking functions, disjunctive WF, decomposition, rank function
synthesis

Sequential arithmetic, non-recursive programs: refinement, checking
inclusions with transitive closure, induction, variance analysis

Fair termination (and liveness): Modification to above techniques

Recursion: via reduction to sequential non-recursive programs

Heap: abstractions via shape analysis techniques

Non-termination: proving, underapproximating weakest preconditions

Concurrency: finding sound interdependent rely/guarantee conditions that
use liveness

158

Conclusion

Implementation using existing tools

� Shape analysis engines, reachability engines, abstract
interpreters, quantifier elimination procedures, decision
procedures, LP solvers, etc.

Termination tools:

� ACL2

� Polyrank

� SpaceInvader

� SatAbs (termination support in development)

� ARMC

� Terminator

� T2 (new version of Terminator in development)

� ………

159

Beyond static termination proving

Many problems are related to termination

� Search for thread-scheduling that guarantees termination
(operating systems)

� Synthesis of compounds that kill targeted cells (medicine)

� ………

Perhaps advances in termination proving will lead to
advances in other areas?

160

Conclusion

Please contact me with questions or ideas!

� byroncook@gmail.com

� If I don’t answer, just write again

Thank you for your attention, questions

