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Proving liveness properties

Only pure termination considered (until now)

Liveness vs. safety

� Safety properties always have a finite counterexample

� Example: “Every Release() is proceeded by Acquire()”

� Liveness properties may have only infinite counterexamples

� Example: “Every Acquire() is followed by Release()”

Termination is the most basic liveness property

� Other liveness properties are like termination with certain 
counterexamples removed
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Specifying liveness properties

Automata on finite/infinite words 

� Good for programmers/testers, as they look like programs

� Difficult to compose, reason about

� Usually more expressive

� More common in industrial applications

� Examples: PSL, SLIC, ForSpec, ………..

Temporal logics

� Difficult for programmers/testers

� Easy to compose using logical operators
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Example: SLIC

SLIC: SLAM’s specification language
� Automata over finite words of program counters (safety properties)

� Infinite words not considered

Function entry / exit
� Automata triggers limited to those of function entry / exit 

Failing words marked with calls to “error()” in transfer 
functions:

IoCallDriver.entry {

if ($2->Tail.Overlay.Sl->MajorFunction==IRP_MJ_POWER) {        

error();

}

}

Implemented as a transformation to reachability
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state { int l = 0; } 

AcquireLock.entry

{

if (l==1) { 

error();

} else {

l=1;

}

}

ReleaseLock.entry

{

if (l==0) { 

error();

} else {

l=0;

}

}

Example: SLIC

int l = 0; 

if (l==1) { 

error();

} else {

l=1;

}

if (l==0) { 

error();

} else {

l=0;

}

void AcquireLock()

{

……………

}

void ReleaseLock()

{

……………

}

void main()

{

……………

void AcquireLock() 

{

………………

}

void ReleaseLock() 

{

………………

}

void main()

{

……………

Are these 

reachable?
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Extending SLIC with liveness properties

To extend SLIC with support for liveness we 

� Change acceptance condition to consider infinite traces 

� Add fairness constraints

� Unfair infinite traces are not accepted

� Fair infinite traces are accepted 

Fair termination 

� Weak fairness = Buchi acceptance conditions = “justice”

� Strong fairness = Streett/Rabin acceptance conditions = 
“compassion”
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Proving liveness properties

Fairness constraints remove classes of 
counterexamples from consideration

� The program doesn’t terminate, but terminates if certain 
paths are ignored

� Fairness constraints describe those traces
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Strong fairness

Fair and unfair traces: 
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Eliminating unfair paths

Strategy: variables help to track unfair vs. fair paths

Unfair paths lead trimmed out with use of assume or 
with constraints that make them well founded

Termination proof is performed over the new 
program

� Reachability-based approach: introduce extra variables into 
the translation

� Invariance analysis: need only consider case where starting 
state is any reachable head of a fair path

� Induction-based approach: …………………?
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if (s==NONE) { 

if (nondet()) {

s=PENDING;

}

}

if (s==PENDING) { 

assume(false);

}

s=NONE;

AcquireLock.entry

{

if (s==NONE) {

if (nondet()) {

s=PENDING;

}

}

}

ReleaseLock.entry

{

if (s==PENDING) { 

assume(false)

}

}

main.entry {

s=NONE;

}

Expressing fairness

void f()

{       .

AcquireLock();

.

.

.

.    

.

.

.

.

.

.

.

ReleaseLock();

.

.

.

.

.

.

.

}

void main()

{

……………

void f()       

{ 

AcquireLock(); 

.

.

.

.

.

ReleaseLock(); 

.

.

}        

void main()

{

fairness {

any { 1 }

any { q==PENDING }

}
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Liveness property library
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Transformation to reachability for fair termination
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if (*) {

assume(set==1);

assume(!inS || inT);

assert(M);

} else if (*) {

set = 1;

inS = 0;

inT = 0;

‘x = x;

‘y = y;

.

.

}

body

}

while(……) {

Transformation to reachability for fair termination

Add the following at each 

command in the program:
• if (S) inS=1;

• if (T) inT=1;

Initialization:
• inS = 0;

• inT = 0;

• set = 0;
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Introduction
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Termination of programs with heap

Where to get the termination argument?

� Over changing delta in the heap shapes? 

� Over values stored in heap? 

Current approaches:

� Finding abstractions of heap shapes expressed in arithmetic

� New variables introduced track sizes of data structures

� Proving termination over abstractions using arithmetic 
techniques

Approach used here:

� Perform separation logic based shape analysis

� If memory safety proved, then we produce abstraction

� Arithmetic techniques to prove termination of abstraction
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Separation logic based shape analysis

Shape analysis: abstract interpretation for 
programs with heap

� Goal: to prove memory safety 

� To prove memory safety you need to know A LOT 
about the shape of memory

� Thus, we get other properties about the heap-
shapes constructed during execution

� Example: “at line 35 x is a pointer to a well-formed 
cyclic doubly-linked list”
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Separation logic based shape analysis

Separation logic

� Classical logic (quantifiers, conjunction, etc)

� Extension:

� : “The heaplet is empty”

� : “The heaplet has exactly one cell 
x, holding a record with field f=y and field d=5.”

� : “The heaplet can be divided so A is true of 
exactly one partition, and B is true of the other”

� Induction definitions 
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Separation logic based shape analysis

Separation logic

� Classical logic (quantifers, conjunction, etc)

� Extension:

� emp: “The heaplet is empty”

� x |-> f:y,d:5: “The heaplet has exactly one cell x, 
holding a record with field f=y and field d=5.”

� A * B: “The heaplet can be divided so A is true of 
exactly one partition, and B is true of the other”

� Induction definitions using emp, |->, *
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Separation logic based shape analysis

Cyclic lists?

�

Acyclic lists?

�

“Pan handle lists”?  

�
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Separation logic based shape analysis

Double linked lists?

Sorted lists?

Lists of lists?

Lists with back edges to head nodes?

Trees? Balanced trees? 

Skiplists?

DAGs? BDDs? XXXXXXXX

��
��

��

��

��
��



58

Separation logic based shape analysis

Separation logic based shape analysis:

� Sets of *-conjuncted formulae represent abstract 
heaps at program locations

� e.g.                          “The program’s heap when 
executing the command at location    consists 
only of an acyclic list pointed to by x”

� Forward symbolic simulation, e.g.
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Separation logic based shape analysis

Separation logic based shape analysis:

� Use of abstraction to improve the chance of 
analysis-termination, e.g.

� Summaries for procedures, and “Frame Rule”:

�
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Thread invariants
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Conclusion

Basics: WF, ranking functions, disjunctive WF, decomposition, rank function 
synthesis 

Sequential arithmetic, non-recursive programs: refinement, checking 
inclusions with transitive closure, induction, variance analysis

Fair termination (and liveness): Modification to above techniques

Recursion: via reduction to sequential non-recursive programs

Heap: abstractions via shape analysis techniques

Non-termination: proving, underapproximating weakest preconditions

Concurrency: finding sound interdependent rely/guarantee conditions that 
use liveness
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Conclusion

Implementation using existing tools

� Shape analysis engines, reachability engines, abstract 
interpreters, quantifier elimination procedures, decision 
procedures, LP solvers, etc.

Termination tools:

� ACL2 

� Polyrank

� SpaceInvader

� SatAbs (termination support in development)

� ARMC

� Terminator

� T2 (new version of Terminator in development)

� ………
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Beyond static termination proving

Many problems are related to termination

� Search for thread-scheduling that guarantees termination 
(operating systems)

� Synthesis of compounds that kill targeted cells (medicine)

� ………

Perhaps advances in termination proving will lead to 
advances in other areas?
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Conclusion

Please contact me with questions or ideas!

� byroncook@gmail.com

� If I don’t answer, just write again

Thank you for your attention, questions


