
1

Program termination · Lecture 2

Berkeley · Spring ’09

Byron Cook

2

Review from the previous lecture

Program termination = WF transition relation

Proving WF can be reduced to finding a larger ranking

relation

Accurate transition relations often too hard to
compute

� Supporting invariants needed to establish termination

Unions of WF-relations not WF, but transitive closure
can be used to offset the problem

3

Review from the previous lecture

We can use variables with finite range to decompose
termination proofs (e.g. the program counter)

Linear ranking function synthesis is decidable

� But linear ranking functions are often not enough…………

4

Review from the previous lecture

Finding linear ranking functions (for relations with only
linear updates and conditions) is decidable

Not all WF linear relations have linear ranking functions,
e.g.

�

�

� Ackermann’s function

� …………..

5

Overview

Notes on a representation for programs

Checking termination arguments

Refining termination arguments

Induction

Termination analysis

6

Programs

7

Programs

8

Programs

9

Programs

Programs are rooted cyclic graphs where
edges are annotated with finite command
sequences

A “cutpoint set” can be computed by uniquely
numbering the nodes and marking each node
that can transition to a node that’s lower in the
order

10

Programs

The meaning of the program is a relation
constructed from the graph and commands

A special variable (not used in the program) pc

is used to track program location

Paths are sequences of pc valuations, traces

are sequences of commands drawn from paths

11

Programs

12

Programs

13

Programs

14

Overview

Notes on a representation for programs

Checking termination arguments

Refining termination arguments

Induction

Termination analysis

15

Transformations to reachability supporting closure

16

Transformations to reachability supporting closure

17

Transformations to reachability supporting closure

18

Transformations to reachability supporting closure

19

Transformations to reachability supporting closure

20

Reachability engines

21

Transformations to reachability supporting closure

22

Transformations to reachability supporting closure

23

Transformations to reachability supporting closure

24

Transformations to reachability supporting closure

25

Transformations to reachability supporting closure

26

Transformations to reachability supporting closure

27

Transformations to reachability supporting closure

28

while(*) {

copied = 0;

.

.

.

if (copied==0) {

if (*) {

old_x = x;

old_y = y;

.

.

copied = 1;

}

} else {

assert(Q);

}

k: loop body
}

Transformations to reachability supporting closure

29

30

31

32

33

34

35

36

Isolation

Nesting of loops allows us to isolate pieces of the program

When proving well-
foundedness of cutpoints in
inner loops, we can ignore non-
termination of the enclosing
loop

When proving well-
foundedness of cutpoints in
outer loops, we can ignore non-
termination of the inner loop

37

Isolation

Nesting of loops allows us to isolate pieces of the program

When proving well-
foundedness of cutpoints in
inner loops, we can ignore non-
termination of the enclosing
loop

When proving well-
foundedness of cutpoints in
outer loops, we can ignore non-
termination of the inner loop

38

Isolation

Nesting of loops allows us to isolate pieces of the program

When proving well-
foundedness of cutpoints in
inner loops, we can ignore non-
termination of the enclosing
loop

When proving well-
foundedness of cutpoints in
outer loops, we can ignore non-
termination of the inner loop

39

When proving well-
foundedness of cutpoints in
inner loops, we can ignore non-
termination of the enclosing
loop

When proving well-
foundedness of cutpoints in
outer loops, we can ignore non-
termination of the inner loop

Isolation

Nesting of loops allows us to isolate pieces of the program

40

When proving well-
foundedness of cutpoints in
inner loops, we can ignore non-
termination of the enclosing
loop

When proving well-
foundedness of cutpoints in
outer loops, we can ignore non-
termination of the inner loop

Isolation

Nesting of loops allows us to isolate pieces of the program

41

When proving well-
foundedness of cutpoints in
inner loops, we can ignore non-
termination of the enclosing
loop

When proving well-
foundedness of cutpoints in
outer loops, we can ignore non-
termination of the inner loop

Isolation

Nesting of loops allows us to isolate pieces of the program

42

Transformations to reachability supporting closure

43

Transformations to reachability supporting closure

44

Transformations to reachability supporting closure

45

Overview

Notes on a representation for programs

Checking termination arguments

Refining termination arguments

Induction

Termination analysis

46

Rank function synthesis

47

Refinement

48

Refinement

49

Refinement

50

Refinement

51

Refinement

52

Refinement

53

Refinement

54

Refinement

55

Refinement

56

Refinement

57

Refinement

58

Refinement

59

Refinement

60

Refinement

61

Refinement

62

Refinement

63

Examples

64

Examples

65

Examples

66

Examples

67

Examples

68

Examples

69

Examples

70

Overview

Notes on a representation for programs

Checking termination arguments

Refining termination arguments

Induction

Termination analysis

71

Induction

72

Induction

73

Induction

74

Induction

75

Induction

76

Induction

77

Induction

78

Induction

79

Induction

80

The bad news

81

The bad news

82

The bad news

83

The bad news

84

The bad news

85

The bad news

86

The bad news

87

The bad news

88

The bad news

89

The bad news

90

The bad news

91

The bad news

92

More bad news

93

More bad news

94

More bad news

95

Overview

Notes on a representation for programs

Checking termination arguments

Refining termination arguments

Induction

Termination analysis

96

97

98

99

100

101

102

103

104

Variance analysis

105

Variance analysis

106

Variance analysis

107

Variance analysis

108

Variance analysis

109

Variance analysis

110

111

112

Variance analysis

Strategy:

� Use abstract interpretation techniques to compute (disjunctive) over-
approximation

� Check that the parts of the disjunction are well founded

Advantages:

� Can use existing abstract interpretation tools to compute overapproximation

� Always terminates

� Fast

Disadvantages:

� No counterexamples

� Less accurate than refinement-based approach

� Abstract domains (currently) not built for our application

� Widening can be too aggressive

� Redundant information kept

113

Termination proof rules

114

Termination proof rules

115

Termination proof rules

116

Termination proof rule

117

Termination proof rule

118

Termination proof rule

