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Review from the previous lecture

Program termination = WF transition relation

Proving WF can be reduced to finding a larger ranking 

relation

Accurate transition relations often too hard to 
compute

� Supporting invariants needed to establish termination

Unions of WF-relations not WF, but transitive closure 
can be used to offset the problem
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Review from the previous lecture

We can use variables with finite range to decompose 
termination proofs (e.g. the program counter)

Linear ranking function synthesis is decidable

� But linear ranking functions are often not enough…………
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Review from the previous lecture

Finding linear ranking functions (for relations with only 
linear updates and conditions) is decidable

Not all WF linear relations have linear ranking functions, 
e.g.

�

�

� Ackermann’s function

� …………..
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Overview

Notes on a representation for programs

Checking termination arguments

Refining termination arguments

Induction

Termination analysis
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Programs

Programs are rooted cyclic graphs where 
edges are annotated with finite command 
sequences

A “cutpoint set” can be computed by uniquely 
numbering the nodes and marking each node 
that can transition to a node that’s lower in the 
order



10

Programs

The meaning of the program is a relation 
constructed from the graph and commands

A special variable (not used in the program) pc

is used to track program location

Paths are sequences of pc valuations, traces 

are sequences of commands drawn from paths  
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Reachability engines
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Transformations to reachability supporting closure
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while(*) {

copied = 0; 

.

.

.

if (copied==0) {

if (*) {

old_x = x;

old_y = y;

.

.

copied = 1;

}

} else { 

assert(Q);

}

k: loop body
}

Transformations to reachability supporting closure
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Isolation 

Nesting of loops allows us to isolate pieces of the program 

When proving well-
foundedness of cutpoints in 
inner loops, we can ignore non-
termination of the enclosing 
loop

When proving well-
foundedness of cutpoints in 
outer loops, we can ignore non-
termination of the inner loop 
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When proving well-
foundedness of cutpoints in 
inner loops, we can ignore non-
termination of the enclosing 
loop

When proving well-
foundedness of cutpoints in 
outer loops, we can ignore non-
termination of the inner loop 

Isolation 

Nesting of loops allows us to isolate pieces of the program 
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When proving well-
foundedness of cutpoints in 
inner loops, we can ignore non-
termination of the enclosing 
loop
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When proving well-
foundedness of cutpoints in 
inner loops, we can ignore non-
termination of the enclosing 
loop

When proving well-
foundedness of cutpoints in 
outer loops, we can ignore non-
termination of the inner loop 

Isolation 

Nesting of loops allows us to isolate pieces of the program 
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Transformations to reachability supporting closure
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Rank function synthesis
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Variance analysis

Strategy: 

� Use abstract interpretation techniques to compute (disjunctive) over-
approximation

� Check that the parts of the disjunction are well founded

Advantages:

� Can use existing abstract interpretation tools to compute overapproximation

� Always terminates

� Fast

Disadvantages:

� No counterexamples

� Less accurate than refinement-based approach

� Abstract domains (currently) not built for our application

� Widening can be too aggressive

� Redundant information kept



113

Termination proof rules



114

Termination proof rules



115

Termination proof rules



116

Termination proof rule



117

Termination proof rule



118

Termination proof rule


