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Introduction

The program termination problem a.k.a. (uniform) 
halting problem:

Given any computer program, decide whether the 
program will finish running or could run forever

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”
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The program termination problem a.k.a. (uniform) 
halting problem:

Given any computer program, decide whether its 
transition relation is well founded

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”
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Myth: It is always impossible to prove terminating 
programs terminating

Truth: It is impossible to always prove terminating 
programs terminating



5

Introduction

Myth: It is always impossible to prove terminating 
programs terminating

Truth: It is impossible to always prove terminating 
programs terminating



6

Introduction

The program termination problem a.k.a. (uniform) 
halting problem:

Given any computer program, decide whether its 
transition relation is well founded

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”



7

Introduction

The program termination problem a.k.a. (uniform) 
halting problem:

Given any computer program, decide whether its 
transition relation is well founded

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”



8

Introduction

Automatically discovering abstraction is key to a 
solution. 

Try to decide with abstraction

� Use only a finite amount of time

� Return either “yes”, “no”, or “don’t know”
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Introduction

Termination is a matter of practical importance:

� Liveness: Is every call to AcquireLock() followed by a call to 
ReleaseLock()?   

� Pure termination: Does the mouse driver’s dispatch routine 
always return control back to the OS?  

Recent advances allow us to prove termination in 
many practical cases
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Introduction

Perhaps recent advances will help unlock solutions to 
other problems

� Search for thread-scheduling that guarantees termination 
(operating systems)

� Wang’s tiling problem (graphics)

� Synthesis of compounds that kill targeted cells (medicine)

� ………



20

Outline of lectures

Lecture 1: 

� Principles

� Rank function synthesis

Lecture 2: 

� Checking & refinement

� Termination analysis

Lecture 3: 

� Recursion 

� WP synthesis 

� Non-termination

Lecture 4: 

� Fair termination

� Data structures

� Concurrency
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Well-ordered sets
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Example:
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Notation:

Transition system: 

Update relation:

Initial states:

Transition relation:
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Supporting invariants

Update relations are typically not well founded, even 
when the transition relation is 

Computing a precise R*(I) is very hard (technically, 
undecidable)
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Supporting invariants

In practice, we must find a supporting invariant that is 
“computable” yet still powerful enough for 
termination: 

Much of the hard part when proving WF is finding the 
right invariant
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Example

Is the update relation well founded?

Is the transition relation well founded?

How would you prove this with a 
decision procedure?
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Outline

Introduction  

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition techniques

Rank function synthesis (if time permits)
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Disjunctive well foundedness

Constructing the argument is much easier

� Simply union based on examples rather than a holistic 
synthesis 

� Many (hopefully) easier problems, rather than one big 
one

Checking the argument is harder

� Even checking WF without invariants is now no longer 
decidable

Checking is something we know how to do

� The check is a very difficult (but solvable) invariance 
property………..more later…………
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terminating have at least some finite structure we 
can make use of
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Rank function synthesis

Question: can we automatically synthesize fs if we 
limit their form?

� Linear ranking functions from linear convex relations: Yes, 
always!

� Linear ranking functions from linear non-convex relations: 
Yes, sometimes……

� Linear ranking functions from non-linear convex relations: 
Yes, sometimes…..

� Linear ranking functions with invariants from convex 
relations:  Yes, always…..

� Non-linear ranking functions from non-linear convex 
relations: Yes, sometimes…..

� …………..
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Linear ranking functions

Not all WF linear relations have linear ranking functions

Example 1:

�

�

Example 2:

�

�

Other examples: Ackermann’s function and most 
programs with complex nested loops
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