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Introduction

-> The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether the
program will finish running or could run forever

-2 Decide is used in the technical sense

= Use only a finite amount of time

= Return either “yes” or “no”



Introduction

-> The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether its
transition relation is well founded

-2 Decide is used in the technical sense

= Use only a finite amount of time

= Return either “yes” or “no”



Introduction

-2 Myth: It is always impossible to prove terminating
programs terminating

= Truth: It is impossible to always prove terminating
programs terminating



Introduction

while(n>1) {
if (n % 2 ==0) {
n =n/2;
} else {
n = 3*%n +1;

=2 Myth: It is always y
programs terminati

> Truth: It is impos ‘.' to always prove terminating
programs terminating
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-> The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether its
transition relation is well founded

-2 Decide is used in the technical sense

= Use only a finite amount of time

= Return either “yes” or “no”



Introduction

-> The program termination problem a.k.a. (uniform)

halting problem:
‘|‘r’y to

Given any computer program, decide whether its
transition relation is well founded

Tey 10

-2 Decide is used in the technical sense

= Use only a finite amount of time "
‘
= Return either “yes” or “no” Or "C‘Dn"' KW’W



Introduction

-> Automatically discovering abstraction is key to a
solution.

-» Try to decide with abstraction

= Use only a finite amount of time

A

= Return either “yes”, “no”, or “don’t know”



Introduction

-> Automatically discovering abstraction is key to a
solution.

-» Try to decide with abstraction

= Use only a finite amount of time
= Return either “yes”, g or “don’t know”
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Introduction

-> Automatically discovering abstraction is key to a
solution.

-» Try to decide with abstraction

= Use only a finite amount of time
m H ) ” o ’ ”
Return elthera , “no”, or “don’t know
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Introduction

-> Termination is a matter of practical importance:

= Liveness: Is every call to AcquirelLock() followed by a call to
Releaselock()?

= Pure termination: Does the mouse driver’s dispatch routine
always return control back to the OS?

-> Recent advances allow us to prove termination in
many practical cases

11
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2 BOOL ConvertDays(UINT32 days, SYSTEMTIME' 1pTime)
{

int dayofweek, month, year;

UINTS ‘*‘month_tab;

Calculate current day of the week
dayofueek = GetDayOfHeek(days);

year = ORIGINYEAR;

while (days > 365)

{
if (IslLeapYear(year))
{
if (days > 366)
{
days -= 366;
vear == ];
}
}
else
{
days -= 365;
vear += 1;
}
}

Determine whether it 1s a leap year

month_tab = (UINT8 *)((IsLeapYear(year))? monthtable_leap :

monthtable);

Related

Proc
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@2 Microsoft Development Environment [design] - mouclass.c [Read Only]

File Edit WView Debug Tools Window Help
N/
mouclass.c ////’——\\\<<j
for (entry = DeviceExtension—->Read(ueue.Flink;
entry !'= &DeviceExtenzion->Readueue;
= entry = entry->»Flink)} {

irp = CONTAINING RECORD (entry, IRP, Tail.Owverlay.ListEntry): Hart‘e'

stack = IoGetCurrentlIrpStackLocation (irp) !

= if (stack-»FileObject == FileCbject) {
RemoveEntrylList (entry): eXa M L
aldCancelBoutine = IoSetCancelRoutine (irp, HULL) !

=] i

S/ IoCancellrp() could have just been called on this IRE.
S/ What we're interested in is not whether IoCancellrp() was call

f/f (ie, nextIrp->Cancel is =et), but whether IoCancellIrp() call
S/ f i= about to call) our cancel routine. To check that, check tl |
S/ of the test-and-set macro IoSetCancelRoutine.
S O =
= if (oldCancelRoutine} { O |
E £F, |
// Cancel routine not called for this IRP. Return this IRP. I
- / i
return irp-: I
- } I
g else { I
= s |
f/ Thi= IRP was just cancelled and the cancel routine was (or will I
f/ be) called. The cancel routine will complete thiz IRP a= soon as
ff we drop the spinlock. So don't do anything with the IRE. I
/i i
ff Blso, the cancel routine will try to dequeue the IRP, =o make the
f/ IRP'= listEntry point to itself. I
- 7 ;
ASSERT (irp->Cancel); |
InitializeListHead (&irp->»Tail.Overlay.ListEntry): I
L } I
|
} v*

«| | »
| Rready I [ln2292  col41 Ch 41 [ Ims]
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Introduction

-> Perhaps recent advances will help unlock solutions to
other problems

= Search for thread-scheduling that guarantees termination
(operating systems)

= Wang’s tiling problem (graphics)
= Synthesis of compounds that kill targeted cells (medicine)

19



Outline of lectures

- Lecture 1: -> Lecture 3:
" Principles = Recursion
= Rank function synthesis = WP synthesis

"= Non-termination

- Lecture 2: = Lecture 4:
» Checking & refinement " Fair termination
= Termination analysis " Data structures

= Concurrency

20



-» Introduction

> Well-founded relations and ranking functions

- Disjunctive well foundedness

-> Decomposition

-2 Notes on rank function synthesis

21



-» Introduction

Cawfaf‘ T&riug

e

> Well-founded relations and ranking functions

Yones et al,

- Disjunctive well foundedness @
Podelsk)

-> Decomposition €&—— FlD)'Cl R\/hh\‘mko

-> Notes on rank function synthesis @=——

Colon ¢ Sipmo
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-» Introduction

> Well-founded relations and ranking functions

- Disjunctive well foundedness

-> Decomposition

-2 Notes on rank function synthesis
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Well-founded relations

24



Well-founded relations
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Well-founded relations

R.? 7 R R R R?
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Well-founded relations

R.? 7 R R R R?

Well-founded relations do not permit infinite sequences
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Well-founded relations

R C § x S is well-founded iff for any infinite
S-sequence sgq, si1,... there exists a 7 such that

(85,85+1) € R.

>
—

Well-founded relations do not permit infinite sequences

-

28



Well-founded relations

R.? 7 R R R R?

RExX >x+1Ax<100
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Well-founded relations

RExX >x+1Ax<100



Well-founded relations

R=[x >x+1Ax<100]

RExX >x+1Ax<100



< If Ris WF, is R; R WEF?

- It R; Ris WF, is R WEF?

> If Ris WF and R C R', is R WF?

> If Ris WF and R’ C R, is R WF?



 R:R* ! ifn>1
\ ID otherwise

1>

R’n

RY = {(s,t)|3In > 0.(s,t) € R"}
R* = RTUID



Questions

If Ris WF, is R* WF? What about RT?

[ R:R*! ifn>1
ID otherwise

\\

{(s,t) | 3n > 0.(s,t) € R"}
RTUID

=
_|_
> 1>



Questions

If RT is WF, is R WF? What about R*?

 R:R* ! ifn>1
ID otherwise

\\

{(s,t) | 3n > 0.(s,t) € R"}
RTUID

=
_|_
> 1>



-» Introduction

> Well-founded relations and ranking functions

- Disjunctive well foundedness

-> Decomposition

-2 Notes on rank function synthesis
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Well-ordered sets

(S, <) is a well-ordered set iff it is

37

reflexive (a < a)

antisymmetric (a < bAb < a= a=>)
transitive (a < bAb<c=a <)
comparable (a < bV b < a)

every nonempty subset of S has a least ele-
ment.



Well-ordered sets

38

e The natural numbers are a well-ordered set,
as in the worst case 0 is the least element of

the subset.

e The integers are not well-ordered because
there is no least element.

e For any integer constant b € N, the set {z |
r € NAx > b} is a well-ordered set.

e The non-negative real numbers are not a
well-ordered set because there there i1s no
least element in the open interval (0,1).



Ranking functions and ranking relations

2> f: 8 — Y is a ranking function if Y is a well-
ordered set.

- We define the ranking relation of f to be:

>y = A ]f(s)> F1)}

> Theorem. WF(R) iff 3f. RC >,

39



Ranking functions and ranking relations

2> f: 8 — Y is a ranking function if Y is a well-
ordered set.

alwm/s well founded

-2 We he the ranking relation ot f to be:

2 {(s,t) | f(s) > f(t)}

> Theorem. WF(R) iff 3f. RC >,

40



Ranking functions and ranking relations

2> f: 8 — Y is a ranking function if Y is a well-
ordered set.

alwm/s well founded

-2 We ne the ranking relation ot f to be:

= {(s,t) | f(s) > f()}
Sy = {(s,t) | f(s) > f() A f(s) > b}
> ipa = {(s,t) | f(s) > f(t)+dA f(s) > b}

> Theorem. WF(R) iff 3f. RC >,



Example:

> REX =x—1Ax>0

42



Example:

> REX =x—1Ax>0

Is K we." ‘counde.d?



Example:

> REX =x—1Ax>0

2 R g &x,—l
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Example:

> REX =x—1Ax>0

> R C &X 1 S'\orH\and for 'F S‘-’N

U‘f(s) = s(x)



Example:

> REX =x—1Ax>0

2 R g &x,—l
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e .

X =Xx—1Ax>0Cx >xAx>—-1 —_

> RC|>

— x,—1



- Dam

Ve, ' 2’ =x —1Ax>0=2 >z Ax>—-1_

X =Xx—1Ax>0Cx >xAx>—-1 —_

> RC|>

= x,—1

48



49

. Dam

Ve, ' 2’ =x —1Az>0=2 >z Ax>—-1_
AN\

D ~
X =Xx—1Ax>0Cx >xAx> -l —_
AN
—
2 Rg&x,—l

Connection 1s macle.. ]:re.czsc

n +he handout
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(a) 1 <0

(b) 0<1

(c) x' >xAx'<1000

(d) x' >xAx'"> 1000

(e) x' >x+1Ax"<1000

(f) x* >x—1Ax" <1000

(g) y/>2y+1AZ =2zAz<1000

(h) yy+1>yAz'=2zAz<1000

(i) (x=x—1Vx'=x+1)Ax <1000
(j) X' =x—zAx>0
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(a) 1<0 |

(b) 0<1 Lets +r7'l'o

() x' >xAx' < 1000 prove these

(d) x'>xA x> 1000 w]ﬂn a decision
Procedure

(e) x' >x+1Ax"<1000
(f) x* >x—1Ax" <1000
(g) y/>2y+1AZ =2zAz<1000

(h) yy+1>yAz'=2zAz<1000

(i) (x=x—1Vx'=x+1)Ax <1000
(j) X' =x—zAx>0



Transition systems

Notation:
- Transition system: P = (I, R, S)
- Update relation: R

- Initial states: [

- Transition relation: RLI = RN (R*(1) x R*(I))

52



Transition systems

Notation:

- Transition system: P —

A transition system is terminating
if its transition relation is WF

-> Update relatic
- Initial states: [

- Transition relation: RLI = RN (R*(1) x R*(I))

53



Transition systems

Notation:




Supporting invariants

-> Update relations are typically not well founded, even
when the transition relation is

> Computing a precise R*(l) is very hard (technically,
undecidable)

55



Supporting invariants

-2 In practice, we must find a supporting invariant that is
“computable” yet still powerful enough for
termination:

() is an invariant of iff ) O R*(I)

=> Much of the hard part when proving WF is finding the
right invariant

56



REX =x4+yAy =yAx>0
I=y < -1

=2 |s the update relation well founded?



REX =x4+yAy =yAx>0
I=y < -1

=2 |s the update relation well founded?
=2 Is the transition relation well founded?

58



REX =x4+yAy =yAx>0
I=y < -1

=2 |s the update relation well founded?
-2 Is the transition relation well founded?

-» How would you prove this with a
decision procedure?

59



-» Introduction

> Well-founded relations and ranking functions

- Disjunctive well foundedness

-> Decomposition techniques

-> Rank function synthesis (if time permits)

60



Is the following relation well founded?

x > 0,

A4 vy>0,

(X =x—1AYy =y+ 1) VX =xAy =y—1)
Yes? What’s the ranking function?

No? Show me a counterexample

61



Is the following relation well founded?

x > 0,
y>0
(X' =x—1AYy =y+ 1) V(X =xAy =y—-1)

' What s the ranking function?

No? Show me a counterexample

2(xy) = 77

62



Is the following relation well founded?

x > 0,
y>0
(X' =x—1AYy =y+ 1) V(X =xAy =y—-1)

' What s the ranking function?

No? Show me a counterexample

Plxy) = 2x+y

63






Is the following relation well founded?

x > 0,

A4 vy>0,

(X =x—-1) VX' =xAy =y—-1)
Yes? What’s the ranking function?

No? Show me a counterexample

65



Is the following relation well founded?

x > 0, 7 - ¥
A v>0
(X =x—-1) VX' =xAy =y—-1)

Yes? What’s the ranking function?

No? Show me a counterexample

66



Is the following relation well founded?

x > 0, 7 - ¥
A v>0
(X =x—-1) VX' =xAy =y—-1)

Yes? What’s the ranking function?

No? Show me a counterexample

Pxy) = 277

67



-2 Its tempting to look for ranking functions by
examining some cases

x > 0,

A4 vy>0,

X =x—1) VX =xAy =y—1)

68



-2 Its tempting to look for ranking functions by
examining some cases

x > 0,

> 0,
A %x’zx—l)ve-ggE}
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-2 Its tempting to look for ranking functions by
examining some cases

x > 0,

> 0,
A %x’zx—l)ve-ggE}

Ts +this crelation well founded 7
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-2 Its tempting to look for ranking functions by
examining some cases

x > 0,
/\{y>0, }
(X =x—1)V cee——)

Ts +this relation well founded?
flxy) =X
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-2 Its tempting to look for ranking functions by
examining some cases

x > 0,

A4 vy>0,
fa—) v (X =x Ay =y — 1)

f(xy) =x
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-2 Its tempting to look for ranking functions by
examining some cases

x > 0,
y >0,
/\{ () \/ (X = x Ny =y — 1) }

£xy)=y
f(xy) =x



-2 Its tempting to look for ranking functions by
examining some cases

x > 0,
y >0,
/\{ () \/ (X = x Ny =y — 1) }

ﬁ(x,y)-::y \Hmbc‘m we
flxy) =X & poir

+hese ?



=2 Its tempting to look for rankiny
examining some cases

x > 0,
/\{y>0, @
faa) v (X =x Ay =y~ 1)

RC>, U, 7

ﬁ(x,y)-::y \Hmbc‘m we
flxy) =X & poir

+hese ?



=2 Its tempting to look for rankiny
examining some cases

x > 0,
/\{y>0, @
faa) v (X =x Ay =y~ 1)

ﬁ(x,y)-::y \Hmbc‘m we
flxy) =X & poir

+hese ?



Disjunctive well foundedness

If ) and R are well founded, is QU R well founded?
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Disjunctive well foundedness

If ) and R are well founded, is QU R well founded?

Counterexample:

x>0

/\ y >0

(X =x+1AyY =y—-1) V(X =x—1Ay =y+1)

78



Counterexample:

x>0

/\ y >0

(X =x+1AyY =y—-1) V(X =x—1Ay =y+1)
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Counterexample:

x>0

/\ y >0

(X =x+1AyY =y—-1) V(X =x—1Ay =y+1)
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Disjunctive well foundedness

Theorem

e Assume that (J1,Q3,...Q, are well-founded
relations

o Riswell-founded iff RT C Q1UQ2U...UQ,.

81



Disjunctive well foundedness

Theorem

e Assume that (J1,Q3,...Q, are well-founded
relations

e R is well-founded zﬁf@@ Q1UQU...UQ,.

This 1s keyl

82



Disjunctive well foundedness

-> Constructing the argument is much easier

= Simply union based on examples rather than a holistic
synthesis

= Many (hopefully) easier problems, rather than one big
one

-> Checking the argument is harder

= Even checking WF without invariants is now no longer
decidable

-> Checking is something we know how to do

= The check is a very difficult (but solvable) invariance
property........... more later............

83



Disjunctive well foundedness

-> Constructing the argument is much easier

= Simply union based on examples rather than a holistic
synthesis

= Many (hopefully) easier problems, rather than one big
one

-> Checking the argument is harder

= Even checking WF without invariants is now no longer
decidable

-> Checking is something we know how to do

= The check is a very difficult (but solvable) invariance
property........... more later............

84



Lemma.

RTCQIRCQand (Q;R) CQ
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“ _
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-» Introduction

-> Well-founded relations and ranking

- Disjunctive well foundedness

-> Decomposition techniques

-> Rank function synthesis (if time permits)

89



-> Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of
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-> Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of
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-> Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of




-> Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

All states at location )0

or
S—

all states at cireuit reset
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-> Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

Wc. Can Prove.

tecmination ome slice

at a fime
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Decomposition










Theorem

e Assume v € VAR
e Assume L = R*(I)(v) is finite
e RR; is well-founded if for all | € L, (RaL}L)l’UIZ

1s well-founded.

98



e Assume v € VAR

e Assume L = R*(I)(v) is finite.
o Let k1 and ks be constants from VAL.

e Assume that, if R(s,t) and t(v) = ko then
s(v) = kq.

o V€ L.(Rjj)lvzl is well founded uff
vie L — {k2}°(Rﬁr)lv=l is well founded



Is the following relation well founded?

R = (b=1Ab=0)V(b=0Ab=1)
A (b=1AX=x—1Ax>0)V(b=0AX =x)

Yes? What’s the ranking function?

No? Show me a counterexample

100



R |p—1 C Qy

R"|p—0 C Q2

Is the following relation@mnded?

R 2 (=1AbZ0)V (K =0Ab=1)
A (b=1AX=x—1Ax>0)V(b=0AX =x)

Yes? What’s the ranking function?

No? Show me a counterexample
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Is the following relation@mnded?

R 2 (=1AbZ0)V (K =0Ab=1)
A (b=1AX=x—1Ax>0)V(b=0AX =x)

Yes? What’s the ranking function?

No? Show me a counterexample
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b =1Ab=1AX <xAx>0
EX,O

R [p=1

Nl
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-» Introduction

-> Well-founded relations and ranking

- Disjunctive well foundedness

-> Decomposition techniques

-2 Notes on rank function synthesis
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Rank function synthesis

Goal: find an f such that

YV, V. R(V,V') = f(V) > f(V')



Rank function synthesis

We consider a search for affine functions over generic
parameters, e.g. f(g1,92,93) = 191 + 292 +0g3 + 5

Goal: find an f such

YV, V. R(V,V') = f(V) > f(V')

106



Rank function synthesis

Thus f is the vector of coeffecients 1, 2,0, 5,
—and f(V)is fiVi+ foVa+ faVs + f4

YW,V R(V,V') = f(V) > f(V')

107



Rank function synthesis

T he d"ff-‘.c.ull-x/ is +that secch

For £ .8 £, e 1s a nn-lnear
Prv\o\e,m.

Thus f is the vector of coeffecients 1, 2,0, 5,
—and f(V)is fiVi+ foVa+ faVs + f4

YW,V R(V,V') = f(V) > f(V')
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Farkas’ lemma

Theorem. Assume that

e M is a matrix,
e v is a column vector,

e f is a row vector,
e and Mwv < (0 is satisfiable.

Then:
Mv<0= fv<0

iff
INAM = FAN>0
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Farkas’ lemma

Theorem. Assume that

e M is a matrix,
e v is a column vector,

e f is a row vector,

e and Mwv < (0 is satisfiable.

Mv<0= fv<0
iff
(S A AMM=fAA>0
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Farkas’ lemma

Theorem. Assume that

e M is a matrix,
e v is a column vector,

e f is a row vector,

e and Mwv < 0 is satisfiable.

O
O

Mv<0= fv<0
uff
= IN.AM = FAXN>0
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=
A Complete Method for the Synthesis of

Linear Ranking Functions

Andreas Podelski and Andrey Rybalchenko

Max-Planck-Institut fiir Informatik

Saarbriicken, Germany

Abstract. We present an automated method for proving the termina-
tion of an unnested program loop by synthesizing linear ranking func-
tions. The method is complete. Namely, if a linear ranking function exists
then it will be discovered by our method. The method relies on the fact
that we can obtain the linear ranking functions of the program loop as
the solutions of a system of linear inequalities that we derive from the
program loop. The method is used as a subroutine in a method for prov-
ing termination and other liveness properties of more general programs
via transition invariants; see [PR03].
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Rank function synthesis

Goal: find an f such that

YV, V. R(V,V') = f(V) > f(V')



Rank function synthesis

Goal: find an f such that
YV,VI. R(V,V") = f(V) > f(V)

or (V) < V"), ot |1 (V) + 1) <0 ]




Rank function synthesis

Goal: find an f such that

IS

or —f(V) < —f(V'), or — fv) <0

YV, V'. R(V, V") :>l\f )+ (V) <0




Rank function synthesis

Goal: find an f such that

VV,V'. R(V,V') = —f(V) + f(V') <0



Farkas’ lemma

Theorem. Assume that
e M is a matrix,
e v is a column vector,
e f is a row vector,
e and Mv < 0 is satisfiable.

Then:
Mv<0= fo<0

iff
INAM = FAN>0

Goal: find an f such that

VV,V'. R(V,V') = —f(V) + f(V') <0
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Farkas’ lemma

Theorem. Assume that
e M is a matrix,
e v is a column vector,
e f is a row vector,
e and Mv < 0 is satisfiable.

Then:

I\ AM=FAN>0

Goal: find an\f such that

v,V —F(V)+ f(V) <0
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Farkas’ lemma

Theorem. Assume that
e M is a matrix,
e v is a column vector,
e f is a row vector,
e and Mv < 0 is satisfiable.

Then:

I\ AM=FAN>0

Goal: find an\f such that

v,V —F(V)+ F(V) <0
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Farkas’ lemma

Theorem. Assume that
e M is a matrix,
e v is a column vector,
e f is a row vector,
e and Mv < 0 is satisfiable.

Then:
Mv<0= fo<0
iff
dINAM=fAAN>0

ag—

Goal: find an f such that

VV,V'. R(V,V') = —f(V) + f(V') <0

Now we can use SMT sohwrs (6.3. 23)

120
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X .

Rank function synthesis

assume (x>0) ;

x - 1;

assume (y>0) ;

y

: =y + pos();



Rank function synthesis

122

assume (x>0) ;
X :=x - 1;
assume (y>0) ;
y : =y + posQ);

X

x/

Y
Y

vV VIV




Rank function synthesis

123

assume (x>0) ;

X :=x - 1;
assume (y>0) ;
y : =y + posQ);

X

x/

Y
Y

vV VIV

V VIANIV V

0
r—1
r—1
0
Y



Rank function synthesis

assume (x>0) ;

124

X :=x - 1;

assume (y>0) ;

y : =y + pos();
oz’ + 0y
12 + 0y
—1z" + 0y
0z’ + 0y
0z’ + -1

+ 4+ 4+ + +

&\

<

~

—1x

—1x
1z
Ox
Ox

vV VIV

+ 4+ + + +

+ 4+ + + +

V VIANIV V

VAN VAN VAR VAN VAN

0
r—1
r—1
0
Y

0

0

0

0

0



Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0
1z + 0y 4+ —-1lx + 0y 4+ 1 < 0
—1z" + 0y + 1lx + 0y + -1 < 0
o’ + 0y + Oz + -1y + 1 < 0
oz + -1y + 0Oz + 1y 4+ 1 < 0
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Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0
1z + 0y 4+ —-1lx + 0y 4+ 1 < 0
—1z" + 0y + 1lx + 0y + -1 < 0
o’ + 0y + Oz + -1y + 1 < 0
oz + -1y + 0Oz + 1y 4+ 1 < 0
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Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0

1z + 0y 4+ —-1lx + 0y 4+ 1 < 0

—1z" + 0y + 1lx + 0y + -1 < 0

o’ + 0y + Oz + -1y + 1 < 0

oz + -1y + 0Oz + 1y 4+ 1 < 0
C

> £
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Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0
1z + 0y 4+ —-1lx + 0y 4+ 1 < 0
—1z" + 0y + 1lx + 0y + -1 < 0
o’ + 0y + Oz + -1y + 1 < 0
oz + -1y + 0Oz + 1y 4+ 1 < 0
C
2> 1
C an we -e'mcl

such an £ and b ?



Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0
1z + 0y 4+ —-1lx + 0y 4+ 1 < 0
—1z" + 0y + 1lx + 0y + -1 < 0
o’ + 0y + Oz + -1y + 1 < 0
oz + -1y + 0Oz + 1y 4+ 1 < 0
C
fly) > [f@,y)
flz'y') > b
C an we -e'mcl

such an £ and b ?



Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0
1z + 0y 4+ —-1lx + 0y 4+ 1 < 0
—1z" + 0y + lx + + <
oz’ + 0y 4+ O0x + - <
oz’ + -1y + O0x +
C

1 <
b < 0

Can we -e'mcl
such an £ and b ?



Rank function synthesis

fa,b) =
_f(aa b) é
C1 —

C2 —
f(@'y)

131

csb + c4b

+ 4+ + + +

VANRVA

VAN VANIVANR VAR VAN

o O O O O



Rank function synthesis

+ 1 < 0
fla,b) = cia 4+ cob + 1 =<0
—f(a,b) = csa + c4b + -1 =0

+ 1 < 0

C1 — —163
C2 = —lcy /o + 1 <0
cr’ 4+ ey + s @;@wt 1 < 0
csx’ + cay + b < 0
le; + 1les + 0 < 0
—].Cl -+ —163 + 0 S 0
les 4+ 1lesw + 0 < 0
—1cs + —-1ey + 0 < O
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Rank function synthesis

oz’ + 0y
12 + 0y
—1z" + 0y
0z’ + 0y
0z’ + -1

133

+ + 4+ + +

_|_

—1x
—1x
1z
Ox
Ox

+ 4+ + + +

+ 4+ + + + +

CaY

C4Y
163

—163
1C4
—164

+ 4+ + + +

+ 4+ 4+ + 4+ +

OO OO S

VAR VAN VAN VANR VAN VA

VAN VANIVANR VAR VAN

o OO O O O

o O O O O



Rank function synthesis

oz’ + 0y
12 + 0y
—1z" + 0y
0z’ + 0y
0z’ + -1

134

+ + 4+ + +

_|_

—1lxz -+
—1x
1z
Ox
Ox

+ 4+ + +

+ 4+ + + + +

CaY

C4Y
163

—163
1C4
—164

+ 4+ + + +

+ 4+ 4+ + 4+ +

OO OO S

VAR VAN VAN VANR VAN VA

VAN VANIVANR VAR VAN

o OO O O O

o O O O O



Rank function synthesis

oz’ + 0y 4+ -1z -+

12 + 0y + -1z +

—1z" + 0y 4+ 1z +

oz’ + 0y + O0x +

oz’ + -1y + O0x +
-

cir’ + ey + +

_|_

161 +

NOV\ \'MCar —ler +

162 +

—lco  +

135

CaY

C4Y
163

—163
1C4
—164

+ 4+ + + +

+ 4+ 4+ + 4+ +

OO OO S

VAR VAN VAN VANR VAN VA

VAN VANIVANR VAR VAN

o OO O O O

o O O O O



Rank function synthesis

oz’ + 0y 4+ -1z -+
12 + 0y + -1z +
—1z" + 0y 4+ 1z +
oz’ + 0y + O0x +
oz’ + -1y + O0x +
cixr’  + +

_|_

_I_

_I_

162 +

Non conyex > 7
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CaY

C4Y
163

—163
1C4
—164

+ 4+ + + +

+ 4+ 4+ + 4+ +

OO OO S

VAR VAN VAN VANR VAN VA

VAN VANIVANR VAR VAN

o OO O O O

o O O O O



Rank function synthesis

0z’
1z’
—1x
0z’
0z’

/

+ + 4+ + +

+ + 4+ + +

—1x
—1x
1z
Ox

+ 4+ + + +

+ 4+ + + + +

CaY

C4Y
163

—163
1C4
—164

+ 4+ + + +

+ 4+ 4+ + 4+ +

OO OO S

VAR VAN VAN VANR VAN VA

VAN VANIVANR VAR VAN

o OO O O O

o O O O O



Rank function synthesis

0z’
1z’
—1x
0z’
0z’

/

+ + 4+ + +

+ + 4+ + +

—1x
—1x
1z
Ox

+ 4+ + + +

+ 4+ + + + +

CaY

C4Y
163

—163
1C4
—164

+ 4+ + + +

+ 4+ 4+ + 4+ +

OO OO S

VAR VAN VAN VANR VAN VA

VAN VANIVANR VAR VAN

o OO O O O

o O O O O



Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0

1z + 0y 4+ —-1lx + 0y 4+ 1 < 0

—1z" + 0y + 1lx + 0y + -1 < 0

o’ + 0y + Oz + -1y + 1 < 0

oz + -1y + 0Oz + 1y 4+ 1 < 0
—,
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Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0

1z + 0y 4+ —-1lx + 0y 4+ 1 < 0

—1z" + 0y + 1lx + 0y + -1 < 0

o’ + 0y + Oz + -1y + 1 < 0

oz + -1y + 0Oz + 1y 4+ 1 < 0
—,

cix’ + ey + e3x + cy + 1 < 0
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Rank function synthesis

oz + 0y + —-1lx + Oy + 1 < 0
1z + 0/ 4+ —-1lx + 0Oy + 1 < 0
RE -1/ + 0y + 1z + Oy + -1 < 0
oz + 0y + Oz + -1y 4+ 1 < 0
oz’ + -1y + Oz + 1y 4+ 1 < 0
=
v 2 o 4+ ey + sz + oy + 1 <0
Farkas’ lemma. R = 1 iff there exist real multipliers

Al,..., A5 > 0 such that

C1 — Z?:l )\Z-az-,l JANGIEEWAN Cq — Z?:l )\z'afz',4 A\ 1 S (Z?:O )\sz)
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Rank function synthesis

o’ + 0y + —-1lx + Oy + 1 < 0
1z + 0/ 4+ —-1lx + 0Oy + 1 < 0
RE -1/ + 0y + 1z + Oy + -1 < 0
oz + 0y + Oz + -1y 4+ 1 < 0
oz’ + -1y + Oz + 1y 4+ 1 < 0
=
v 2 o 4+ ey + sz + oy + 1 <0
Farkas’ lemma. R = 1 iff there exist real multipliers

)\1,...,@2 0 such that
C1 — Z?:l )\Z-az-,l JANGIEEWAN Cq — Z?:l )\z'afz',4 A\ 1 S ( ECZ:O )\sz)



Rank function synthesis

oz + 0y + —-1lx + Oy + 1 < 0

1z + 0/ 4+ —-1lx + 0Oy + 1 < 0

R2 -1z + 0 + 1z + 0y + -1 < 0

oz 4+ 0y + Oz + -1y + 1 < O

AR S S AR
—>

v 2 o cax + cy + 1 < 0

Farkas” lemma. = /Y iff thete exist real multipliers
A1, ../, A5 > 0 such tha

@bziﬂxzaz,l S5 haia A 1< (X i)




Rank function synthesis

+ Oy
+ 0y
+ 0y
+ 0y
+ -1y
Y = e’ 4+ oy

Farkas’ lemma.
Al,..., A5 > 0 such that

C1 = Z?:]_ )\ ARRRNA Cq4 = Z’?:]_ )\Z‘a"’:all /\ 1 S (Z?:O )\sz)

144

—1x
—1x
lx
Ox

+ 4 4+ + +

+ 1 <
+ 1 <
+ -1 <
+ 1 <
+ 1 <
+ 1 < 0

R = 1 ff there exist real multipliers

o O O O O



Rank function synthesis

o’ + 0y + —-1lx + Oy +[1 \< O
1z + 0y 4+ —-1lx + 0Oy +| 1 [€ 0
RE -1/ 4+ 0y + 1z + 0y +|-1/< 0
oz’ + 0y + Oz + -1y 4+ 1 /< 0
oz’ + -1y + Oz + 1y +\1/ < 0
=
v 2 o 4+ ey + sz + oy + 1 <0
Farkas’ lemma. R = 1 iff there exist real multipliers

Al,..., A5 > 0 such that

=Yg N A A =30 haia A 1< (D0 A@)
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Rank function synthesis

C1

0z" + 0y

12 + 0y

R -1z + 0oy
0z’ + 0y

0z’ + -1y

C1 =

Cor =

Cg3 =

P A Ca =

I <

Farkas’ len “

ALy e A
D

C1 = )iy Aithi1 A

146

~

WA

—1x
—1x
lx
Ox

+ + + +

Ox

> >+ 4+ + + +

1o
02
—1A
02
1o
A1 >0
A >0

> >+ + + + +

A2 >0
As >0

+ + + +

>+ + + + +

W
W
04
—1)y
1y
A3 >0

VANIVANRVAR VAN

++ + + +

D O O O O

OAs
—1)s
0As
15
15

Cq = Z’?:]_ )\":a"’:a4 /\ 1 S (Z?:O )\sz)



Rank function svntbsass

Linear , eonvex with

0
°“|Y 3 V‘r.labl‘s ®@o0o0o000 0 S O
R S T oy —|_ _]_ S O
Oz 4+ ¢ S0z + -1y + 1 < 0
Oz’ —1 Ox 1 8
[ s— y
i = O)\l + 1)\2 + —1)\3 -+ O)\4 + O)\5
Co = O)\l —|— O)\Q + 0)\3 —|— O)\4 —|— —]_)\5
Cg3 = —].)\1 + —].)\2 + 1)\3 + 0)\4 + 0)\5
Y 3 ca = 0\ + 0X + 03 + =1 + 1X;
1 < 1N\ + 19 + —1X3 + 1Ay + 15
cC1 = —].(33 N\ )\1 Z 0 A )\2 2 0 A )\3 Z 0
co = —1leca N Xg>0 A A5>0
Farkas’ len - ! t= > =
A,
>

C1 — Zz’:l )\Z-az-,l JANGIEEWAN Cq — Z?:l )\z'afz',4 A\ 1 S (Z?:O )\sz)
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Yy /

Rank function synthesis

Satisfying assignment:

C1 = 1 Co = 0
0" + 0y + —lz N _01 . (1)
1 2
2" + 0y + —lz As 0 M = 0
A
R= -1z + 04 + 1z As = 0 {
oz’ + 0y + O0x + ‘ < 0
0oz’ + -1y + Ox T N
i = O)\l + 1)\2 + —1)\3 -+ O)\4 + O)\5
Co 1N + 0o + O3 + O\ + —1)5
Cg3 = —].)\1 + —].)\2 + 1)\3 + 0)\4 + 0)\5
Y 3 ca = 0N\ + 0\ + 03 + =1 + 1)
1 < 1A + 1o + =13 + 14 +  1)Xs
i = —]_(33 N\ )\1 Z 0 A )\2 2 0 A )\3 Z 0
Cy = —].C4 N\ )\4 Z 0 A )\5 Z 0

Farkas’ len
ALy A
D

C1 — Zi:l )\Z-az-,l JANGIEEWAN Cq — Z?:l )\z'afz',4 A\ 1 S (Z?:O )\sz)
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Rank function synthesis

C1 = 1 Co = 0

/ / . cs = —1 ca, = 0

O:r;, + ()y/ + lx /\i _ /\‘; _

2 + 0Oy + —lx As = 0 A o= 0

RE2 —1x2' + 0Oy + 1z s = 0

oz’ + 0y + O0x + ‘ < 0
Oz’ -1y’ 0 . 1 < 0

x + Yy + x + g + <

=

v 2 o 4+ ey + sz + oy + 1 <0

Farkas’ lemma. R = 1 iff there exist real multipliers

Al,..., A5 > 0 such that

C1 = Z?:]_ )\":a"ia]- ARRRNA Cq4 = Z?:]_ )\ia":a4 /\ 1 S (Z?:O )\sz)
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Yy /

Satisfying assignment:

C1 = 1 Co = 0
—|_ c2b C3 = -1 C4 = 0
—|_ C4b A1 = 0 A = 1
)\3 — 0 )\4 — 0
Cq - - ]_63 ) e = 0 /

Q
\V)
|
|
o
)
N

-

&

—

@ q
_I_

o
VANRVA
-

Farkas’ lemma. R = 1 ff there exist real multipliers
Al,..., A5 > 0 such that

€1 = Z?:]_ )\":a"ia]- ARRRRA Cq4 = Z?:]_ )\ia":a4 A S (Z?:O )\sz)
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Yy /

Satisfying assignment:

C1 = 1 Co = 0
—|_ CZb (03 = —1 C4 :a

_|_ c4b A = 0 A = 1
Cq = —]_63 , )\z _ 4 ‘
Co = —lecg n Z 0
e (41 <0

Q _E(X )'/744—0
\ % - f(yz\"/))"‘**”]

Vv = x4+ ey 4+ esx + cuy 1 < 0

Farkas’ lemma. R = 1 ff there exist real multipliers
Al,..., A5 > 0 such that

ci= 00 Nain A A ea=0  Naga A 1< (30 Niby)
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Rank function synthesis

oz + 0y + —-1lx + Oy + 1 < 0

1z + 0/ 4+ —-1lx + 0Oy + 1 < 0

RE -1/ + 0y + 1z + Oy + -1 < 0
oz + 0y + Oz + -1y 4+ 1 < 0

oz’ + -1y + 0z + 1y 4+ 1 < 0

A
= fly)zax+ 0y
R "E()//")):’lx +0y
v = gz + ey 4+ esx + ey + 1 < 0
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Rank function synthesis

0z’

R £

153

1z’

—1x
0z’
0z’

+ 0y
+ 0y
/ _I_ Oy/
+ 0y
+ —1ly
f(z',y)

+ + 4+ + +

—1x
—1x
lx
Ox
Ox

+ 4 4+ + +

 —
VAN VANIVANR VAR VAN
el oNeNolNo



Rank function synthesis

0z’

R £

154

1z’

—1x
0z’
0z’

+ 0y
+ 0y
/ _I_ Oy/
+ 0y
+ —1ly
f(z',y)

+ + 4+ + +

—1x
—1x
lx
Ox
Ox

+ 4 4+ + +

L
IANAIAIAIA
o O O O O



Ra '
nk function synthesis

0’ + 0
1z’ g .
RZ o =
o4 Oz/ N ()y + 1 < 0
10 / L y + 1 >
, o + 0 c .
> - oo y + —1
ly + O H <
zr + ly -+ 1 .
< 0
— = A
‘E(Xn\/):
’f( )37X+ 07/
)/IU) _—"")( +0
L b=4 7
_33, + 1 < 0
r + -1 2 0
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Rank function synthesis

oz + 0y + —-1lx + Oy + 1 < 0
1z + 0/ 4+ —-1lx + 0Oy + 1 < 0
RE -1/ + 0y + 1z + Oy + -1 < 0
oz + 0y + Oz + -1y 4+ 1 < 0
oz’ + -1y + 0z + 1y 4+ 1 < 0
C

Q.’EO

)
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Rank function synthesis

oz + 0y + —-1lx + Oy + 1 <
-ogein

E cat input.txt
_l{ — relationt fromi{d.¥>
-, tu(Hp,Tp}
» constraintd [ X>A
- ap=f-1
- YA
- Tp>¥
1>
, dunp?'output . txt’ >

O
plix] <

L

G Pankflnder —extrarank input.txt —-primed
ankFinder: Synthesis of linear ranking functluns.
omputing primed boundedness constraint vx' >= d_B8

[1.81]

A

1

ol

anking r
ounded by da
in decreasze d
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Rank function synthesis

oz + 0y + -1z + Oy + 1 < 0
-omwin

cat i1nput._txt

R —Eelatlun{ fromi}d . T}é/yp S ></ ﬂ
tu(Hp,Tp}

: constraintd [ X>A

. RpR1 S/ R
R -

, dunp?'output . txt’ >

K

‘(‘hwbws —\anO‘LL o

G Pankflnder —extrarank input.txt —-primed
ankFinder: Synthesis of linear ranking functiuns.
omputing primed boundedness constraint px' >=
anking r = [1 Al
ounded by da

S -

in decrease d 1 <f}§\\\\-_~___;>
4 powrel

6%8 down ‘] 1
(f xed 1n WV—meulal o~ )
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Rank function synthesis

-> Question: can we automatically synthesize fs if we
limit their form?

" Linear ranking functions from linear convex relations: Yes,
always!

" Linear ranking functions from linear non-convex relations:
Yes, sometimes......

" Linear ranking functions from non-linear convex relations:
Yes, sometimes.....

" Linear ranking functions with invariants from convex
relations: Yes, always.....

= Non-linear ranking functions from non-linear convex
relations: Yes, sometimes.....
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Linear ranking functions

-> Not all WF linear relations have linear ranking functions

> Examplel: R£x>0AxX = —2x + 10
* No linear f exists s.t. R C >
" R+ g Ex,O U &(—x,—lO)

> Example2: RE2x>0AX =x—yAYy =y+1
= No linear f exists s.t. R C >
= R C Qx,OUE(—y,O)

-> Other examples: Ackermann’s function and most
programs with complex nested loops
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-» Introduction

> Well-founded relations and ranking functions

- Disjunctive well foundedness

-> Decomposition

-2 Notes on rank function synthesis
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