
1

Program termination · Lecture I

Berkeley · Spring ’09

Byron Cook

2

Introduction

The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether the
program will finish running or could run forever

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”

3

Introduction

The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether its
transition relation is well founded

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”

4

Introduction

Myth: It is always impossible to prove terminating
programs terminating

Truth: It is impossible to always prove terminating
programs terminating

5

Introduction

Myth: It is always impossible to prove terminating
programs terminating

Truth: It is impossible to always prove terminating
programs terminating

6

Introduction

The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether its
transition relation is well founded

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”

7

Introduction

The program termination problem a.k.a. (uniform)
halting problem:

Given any computer program, decide whether its
transition relation is well founded

Decide is used in the technical sense

� Use only a finite amount of time

� Return either “yes” or “no”

8

Introduction

Automatically discovering abstraction is key to a
solution.

Try to decide with abstraction

� Use only a finite amount of time

� Return either “yes”, “no”, or “don’t know”

9

Introduction

Automatically discovering abstraction is key to a
solution.

Try to decide with abstraction

� Use only a finite amount of time

� Return either “yes”, “no”, or “don’t know”

10

Introduction

Automatically discovering abstraction is key to a
solution.

Try to decide with abstraction

� Use only a finite amount of time

� Return either “yes”, “no”, or “don’t know”

11

Introduction

Termination is a matter of practical importance:

� Liveness: Is every call to AcquireLock() followed by a call to
ReleaseLock()?

� Pure termination: Does the mouse driver’s dispatch routine
always return control back to the OS?

Recent advances allow us to prove termination in
many practical cases

12

Introduction

13

Introduction

14

Introduction

15

Introduction

16

Introduction

17

Introduction

18

Introduction

19

Introduction

Perhaps recent advances will help unlock solutions to
other problems

� Search for thread-scheduling that guarantees termination
(operating systems)

� Wang’s tiling problem (graphics)

� Synthesis of compounds that kill targeted cells (medicine)

� ………

20

Outline of lectures

Lecture 1:

� Principles

� Rank function synthesis

Lecture 2:

� Checking & refinement

� Termination analysis

Lecture 3:

� Recursion

� WP synthesis

� Non-termination

Lecture 4:

� Fair termination

� Data structures

� Concurrency

21

Outline

Introduction

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition

Notes on rank function synthesis

22

Outline

Introduction

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition

Notes on rank function synthesis

23

Outline

Introduction

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition

Notes on rank function synthesis

24

Well-founded relations

25

Well-founded relations

26

Well-founded relations

27

Well-founded relations

Well-founded relations do not permit infinite sequences

28

Well-founded relations

Well-founded relations do not permit infinite sequences

29

Well-founded relations

30

Well-founded relations

31

Well-founded relations

32

Questions

33

Questions

34

Questions

35

Questions

36

Outline

Introduction

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition

Notes on rank function synthesis

37

Well-ordered sets

38

Well-ordered sets

39

Ranking functions and ranking relations

40

Ranking functions and ranking relations

41

Ranking functions and ranking relations

42

Example

Example:

43

Example

Example:

44

Example

Example:

45

Example

Example:

46

Example

Example:

47

Example

Example:

48

Example

Example:

49

Example

Example:

50

Questions

51

Questions

52

Transition systems

Notation:

Transition system:

Update relation:

Initial states:

Transition relation:

53

Transition systems

Notation:

Transition system:

Update relation:

Initial states:

Transition relation:

A transition system is terminating
if its transition relation is WF

54

Transition systems

Notation:

Transition system:

Update relation:

Initial states:

Transition relation:

A transition system is terminating
if its transition relation is WF

55

Supporting invariants

Update relations are typically not well founded, even
when the transition relation is

Computing a precise R*(I) is very hard (technically,
undecidable)

56

Supporting invariants

In practice, we must find a supporting invariant that is
“computable” yet still powerful enough for
termination:

Much of the hard part when proving WF is finding the
right invariant

57

Example

Is the update relation well founded?

Is the transition relation well founded?

How would you prove this with a
decision procedure?

58

Example

Is the update relation well founded?

Is the transition relation well founded?

How would you prove this with a
decision procedure?

59

Example

Is the update relation well founded?

Is the transition relation well founded?

How would you prove this with a
decision procedure?

60

Outline

Introduction

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition techniques

Rank function synthesis (if time permits)

61

Example

62

Example

63

Example

64

Example

65

Example

66

Example

67

Example

68

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

69

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

70

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

71

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

72

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

73

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

74

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

75

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

76

Temptation!!!!!

Its tempting to look for ranking functions by
examining some cases

77

Disjunctive well foundedness

78

Disjunctive well foundedness

79

Disjunctive well foundedness

80

Disjunctive well foundedness

81

Disjunctive well foundedness

82

Disjunctive well foundedness

83

Disjunctive well foundedness

Constructing the argument is much easier

� Simply union based on examples rather than a holistic
synthesis

� Many (hopefully) easier problems, rather than one big
one

Checking the argument is harder

� Even checking WF without invariants is now no longer
decidable

Checking is something we know how to do

� The check is a very difficult (but solvable) invariance
property………..more later…………

84

Disjunctive well foundedness

Constructing the argument is much easier

� Simply union based on examples rather than a holistic
synthesis

� Many (hopefully) easier problems, rather than one big
one

Checking the argument is harder

� Even checking WF without invariants is now no longer
decidable

Checking is something we know how to do

� The check is a very difficult (but solvable) invariance
property………..more later…………

85

Induction

86

Induction

87

Example

88

Example

89

Outline

Introduction

Well-founded relations and ranking

Disjunctive well foundedness

Decomposition techniques

Rank function synthesis (if time permits)

90

Decomposition

Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

91

Decomposition

Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

92

Decomposition

Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

93

Decomposition

Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

94

Decomposition

Most systems we’re interested in proving
terminating have at least some finite structure we
can make use of

95

Decomposition

96

Decomposition

97

Decomposition

98

Decomposition

99

Decomposition

100

Example

101

Example

102

Example

103

Example

104

Outline

Introduction

Well-founded relations and ranking

Disjunctive well foundedness

Decomposition techniques

Notes on rank function synthesis

105

Rank function synthesis

106

Rank function synthesis

107

Rank function synthesis

108

Rank function synthesis

109

Farkas’ lemma

110

Farkas’ lemma

111

Farkas’ lemma

112

Rank function synthesis

113

Rank function synthesis

114

Rank function synthesis

115

Rank function synthesis

116

Rank function synthesis

117

Heap-bounds synthesis

118

Heap-bounds synthesis

119

Heap-bounds synthesis

120

Heap-bounds synthesis

121

Rank function synthesis

122

Rank function synthesis

123

Rank function synthesis

124

Rank function synthesis

125

Rank function synthesis

126

Rank function synthesis

127

Rank function synthesis

128

Rank function synthesis

129

Rank function synthesis

130

Rank function synthesis

131

Rank function synthesis

132

Rank function synthesis

133

Rank function synthesis

134

Rank function synthesis

135

Rank function synthesis

136

Rank function synthesis

137

Rank function synthesis

138

Rank function synthesis

139

Rank function synthesis

140

Rank function synthesis

141

Rank function synthesis

142

Rank function synthesis

143

Rank function synthesis

144

Rank function synthesis

145

Rank function synthesis

146

Rank function synthesis

147

Rank function synthesis

148

Rank function synthesis

149

Rank function synthesis

150

Rank function synthesis

151

Rank function synthesis

152

Rank function synthesis

153

Rank function synthesis

154

Rank function synthesis

155

Rank function synthesis

156

Rank function synthesis

157

Rank function synthesis

158

Rank function synthesis

159

Rank function synthesis

Question: can we automatically synthesize fs if we
limit their form?

� Linear ranking functions from linear convex relations: Yes,
always!

� Linear ranking functions from linear non-convex relations:
Yes, sometimes……

� Linear ranking functions from non-linear convex relations:
Yes, sometimes…..

� Linear ranking functions with invariants from convex
relations: Yes, always…..

� Non-linear ranking functions from non-linear convex
relations: Yes, sometimes…..

� …………..

160

Linear ranking functions

Not all WF linear relations have linear ranking functions

Example 1:

�

�

Example 2:

�

�

Other examples: Ackermann’s function and most
programs with complex nested loops

161

Today

Introduction

Well-founded relations and ranking functions

Disjunctive well foundedness

Decomposition

Notes on rank function synthesis

