
A. Finkel and Ph. Schnoebelen

Well−Structured Transition Systems
Everywhere !

Research Report LSV−98−4, Apr. 1998

Ecole Normale Supérieure de Cachan
61, avenue du Président W ilson
94235 Cachan Cedex France

http://www.lsv.ens−cachan.fr/Publis/
Research Report LSV−98−4, Lab. Spécification et Vérification, CNRS & ENS de Cachan, France, Apr. 1998
An updated version will appear in Theoretical Computer Science. See WWW publications pages of the authors.Well-Structured Transition Systems Everywhere !A. Finkel and Ph. SchnoebelenLab. Speci�cation and Veri�cationENS de Cachan & CNRS URA 223661, av. Pdt Wilson; 94235 Cachan Cedex; FRANCEemail: f�nkel,phsg@lsv.ens-cachan.frApril 7, 1998AbstractWell-structured transition systems (WSTS's) are a general class of in�nite state systemsfor which decidability results rely on the existence of a well-quasi-ordering between statesthat is compatible with the transitions.In this article, we provide an extensive treatment of the WSTS idea and show severalnew results. Our improved de�nitions allow many examples of classical systems to be seenas instances of WSTS's.1 IntroductionVeri�cation of in�nite-state systems. Formal veri�cation of programs and systems is avery active �eld for both theoretical research and practical developments, especially since im-pressive advances in formal veri�cation technology proved feasible in several realistic appli-cations from the industrial world. The highly successful model-checking approach for �nitesystems [BCM+92] suggested that a working veri�cation technology could well be developed forsystems with an in�nite state space.This explains the considerable amount of work that has been devoted in recent years to this\veri�cation of in�nite state systems" �eld, with a surprising wealth of positive results [Mol96,Esp97]. The �eld now has its own conference.Well-structured transition systems. A very interesting development in this �eld is theintroduction of well-structured transition systems (WSTS's). These are transition systems wherethe existence of a well-quasi-ordering over the in�nite set of states ensures the termination ofseveral algorithmic methods. WSTS's are an abstract generalization of several speci�c structuresand they allow general decidability results that can be applied to Petri nets, lossy channelsystems, and many more. (Of course, WSTS's are not intended as a general explanation of allthe decidability results one can �nd for speci�c models.)Finkel [Fin87a, Fin87b, Fin90] was the �rst to propose a de�nition of WSTS (actually severalvariant de�nitions). His insights came from the study of Petri nets where several decidabilityresults rely on a monotonicity property (transitions �rable from markingM are �rable from anylarger marking) and Dickson's lemma (inclusion between markings of a net is a well-ordering). He1

mainly investigated the decidability of termination, boundedness and coverability-set problems.He applied the idea to several classes of �fo nets and of CFSM's (see Section 9).Independently, Abdulla et al. [A�CJY96] later proposed another de�nition. Their insightscame from their study of lossy-channel systems and other families of analyzable in�nite-statesystems (e.g. integral relational automata [�Cer94]). They mainly investigated covering, in-evitability and simulation problems. They applied the idea to timed networks [AJ97] and lossysystems.Later, Kushnarenko and Schnoebelen [KS97a] introduced WSTS's with downward compati-bility, motivated by some analysis problems raised by Recursive-Parallel Programs.Some criticisms. Though the two earlier lines of work had a great unifying power, they stillsu�ered from some defects (these defects are also present in [KS97a]).� Both Finkel and Abdulla et al. proposed de�nitions aiming at a speci�c algorithm or two,hence their WSTS concept is burdened with unnecessary structure. Finkel was interestedin coverability-sets, so that his de�nition included e.g. complex continuity requirements.Abdulla et al. were interested in simulation with a �nite state system, so that theirde�nition included e.g. labels on transitions.� More generally, both de�nitions are conservative for no good reason we can think of. As aconsequence, both proposals end up surprisingly short of simple examples of their \general"concept.� Both de�nitions mix up structural and e�ectiveness issues while in reality the e�ectivenessrequirements are quite variable, depending on which algorithm one is talking about. As aresult their de�nition becomes more complex and restrictive when more decision methodsfor WSTS's are found.� Several proofs in these earlier papers are quite messy or tedious. In part this is due tothe unnecessarily complex de�nitions and to a lack of classifying work. As a consequencesome potentially enlightening connections are hard to notice.� These early works do not tackle the fundamental question of \how / when can one turna given (family of) transition system into WSTS ?", i.e. how can one �nd a compatiblewell-ordering ?Our contribution. This article is both a survey of earlier works on the WSTS idea, and apresentation of our proposal for a new conceptual framework, together with several new resultsor new extensions of earlier results.More precisely,� We propose and investigate a cleaner, more general de�nition of WSTS, generalizing theearly insights of Finkel, Abdulla et al., Kushnarenko and Schnoebelen.� We separate structural and e�ectiveness issues and only add e�ectiveness hypothesis whenand where they are needed for a decision method.� We classify the decision methods into two main families: set-saturation and tree-saturationmethods. 2

� We give �ve main decidability results. Except for Theorem 5.5, they never appeared insuch a general framework. Both Theorem 3.6, made possible by our De�nition 3.2, andTheorem 4.8, made possible by the key notion of stuttering compatibility, have much moreapplications than their ancestors.� We give a quite large collection (summarized in Fig. 9, page 26) of system models that canbe �tted into the WSTS framework. These examples come from various �elds of computerscience. Many have not been noticed earlier. Several of them use original and innovativewell-orderings. Roughly half of them are WSTS's only in our new, generalized, de�nition.� Finally, we ask how and when a given transition system can be given a well-structure.We o�er surprisingly general answers (e.g. our Ubiquity Theorem) for the more liberalde�nition.Outline of the article. This article is divided into three parts. In Part I we introduce thefundamentals concepts underlying WSTS's (section 2) and we describe the two main families ofdecision methods for WSTS's: set-saturation methods (section 3) and tree-saturation methods(section 4). We conclude this part with downward-WSTS's (section 5).Part II is devoted to examples of WSTS's. We successively visit Petri nets and their exten-sions (section 6), string rewrite systems (section 7), process algebra (section 8), communicatingautomata (section 9) and a few less classical operational models of computation (section 10).All these (families of) models are found to be well-structured in natural ways. This is a strongpoint in favor of our claim that we propose a more interesting de�nition of WSTS's.Finally, Part III is concerned with the passage from TS's toWSTS's. We investigate when andhow does there exist well-quasi-orderings that can provide a well-structure to a given transitionsystem.Part IFundamentals of WSTS'sPart I presents the technical core of the WSTS idea. As a rule, examples and illustrations havebeen postponed until Part II.2 Basic notions2.1 Well-quasi-orderingsRecall that a quasi-ordering (a qo) is any re
exive and transitive relation �. We let x < ydenote x � y 6� x. A partial ordering (a po, an \ordering", : : :) is an antisymmetric qo. Anyqo induces an equivalence relation (x � y i� x � y � x) and gives rise to a po between theequivalence classes.We now need a few results from the theory of well-orderings (see also e.g. [Kru72, Hig52]).De�nition 2.1. A well-quasi-ordering (a wqo) is any quasi-ordering � (over some set X) suchthat, for any in�nite sequence x0; x1; x2; : : : in X, there exists indexes i < j with xi � xj .3

Hence a wqo is well-founded, i.e. it admits no in�nite strictly decreasing sequence x0 > x1 >x2 > � � �Lemma 2.2. (Erd�os & Rado) Assume � is a wqo. Then any in�nite sequence contains anin�nite increasing subsequence: xi0 � xi1 � xi2 : : : (with i0 < i1 < i2 : : :).Proof. Consider an in�nite sequence and the set M = fi 2 N j 8j > i; xi 6� xjg. M cannotbe in�nite, otherwise it would lead to an in�nite subsequence contradicting the wqo hypothesis.ThusM is bounded and any xi with i beyondM can start an in�nite increasing subsequence.Given � a quasi-ordering, an upward-closed set is any set I � X such that y � x 2 I entailsy 2 I . To any x 2 X we associate " x def= fy j y � xg. It is upward-closed. A basis of anupward-closed I is a set Ib such that I = Sx2Ib "x. Higman investigated ordered sets with the�nite basis property.Lemma 2.3. [Hig52] If � is a wqo, then any upward-closed I has a �nite basis.Proof. The set of minimal elements of I is a basis because � is well-founded. It only containsa �nite number of non-equivalent elements otherwise they would make an in�nite sequencecontradicting the wqo assumption.Lemma 2.4. If � is a wqo, any in�nite increasing sequence I0 � I1 � I2 � � � � of upward-closedsets eventually stabilizes, i.e. there is a k 2 N such that Ik = Ik+1 = Ik+2 = : : :Proof. Assume we have a counter-example. We extract an in�nite subsequence where inclusionis strict: In0 In1 In2 � � � . Now, for any i > 0, we can pick some xi 2 Ini n Ini�1 . Thewell-quasi-ordering hypothesis means that the in�nite sequence of xi's contains an increasingpair xi � xj for some i < j. Because xi belongs to an upward-closed set Ini we have xj 2 Ini ,contradicting xj 62 Inj�1 .2.2 Transition systemsA transition system (TS) is a structure S = hS;!; : : :i where S = fs; t; : : :g is a set of states,and !� S � S is any set of transitions. TS's may have additional structure like initial states,labels for transitions, durations, causal independence relations, etc., but in this paper we areonly interested in the state-part of the behaviors.We write Succ(s) (resp. Pred(s)) for the set fs0 2 S j s ! s0g of immediate successors ofs (resp. fs0 2 S j s0 ! sg the predecessors). A state with no successor is a terminal state. Acomputation is a maximal sequence s0 ! s1 ! s2 � � � of transitions.We write n! (resp. +!, =!, �!) for the n-step iteration of the transition relation ! (resp. forits transitive closure, for its re
exive closure, for its re
exive and transitive closure). Hence 1!is !. We use similar notation for Succ and Pred, so that for � 2 f+;=; �; 0; 1; 2; : : :g, Succ�(s)is fs0 j s �! s0g.S is �nitely branching if all Succ(s) are �nite. We restrict our attention to �nitely branchingTS's. 4

2.3 Well-structured transition systemsDe�nition 2.5. A well-structured transition system (WSTS) is a TS S = hS;!;�i equippedwith a qo �� S � S between states such that the two following conditions hold:(1) well-quasi-ordering: � is a wqo, and(2) compatibility: � is (upward) compatible with !, i.e. for all s1 � t1 and transition s1 !s2, there exists a sequence t1 �! t2 such that s2 � t2.Thus compatibility states that � is a weak simulation relation �a la R. Milner.See Figure 1 for a diagrammatic presentation of compatibility where we quantify universallyover solid lines and existentially over dashed lines. Several families of formal models of processesPSfrag replacements8 9s1s2 t1t2�� �Figure 1: (Upward) compatibilitygive rise to WSTS's in a natural way, e.g. Petri nets when inclusion between markings is usedas the well-ordering. In Part II, we shall see many more examples.3 Set-saturation methodsWe speak of set-saturation methods when we have methods whose termination relies on Lemma 2.4.In this section, we illustrate the idea with backward reachability analysis, generalizing a resultfrom [A�CJY96].Other examples of the set-saturation family are the algorithm for simulation by a �nite statesystem (from [A�CJY96]), and the algorithm for the sub-covering problem (from [KS97a]).Assume S = hS;!;�i is a WSTS and I � S is a set of states. Backward reachabilityanalysis involves computing Pred�(I) as the limit of the sequence I0 � I1 � : : : where I0 def= Iand In+1 def= In[Pred(In). The problem with such a general approach is that termination is notguaranteed. For WSTS's, this can be solved when I is upward-closed:Proposition 3.1. If I � S is an upward-closed set of states, then Pred�(I) is upward-closed.Proof. Assume s 2 Pred�(I). Then s �! t for some t 2 I . If now s0 � s then upward-compatibility entails that s0 �! t0 for some t0 � t. Then t0 2 I and s0 2 Pred�(I).Pred�(I) can be computed if we make a few decidability assumptions:De�nition 3.2. A WSTS has e�ective pred-basis if there exists an algorithm accepting anystate s 2 S and returning pb(s), a �nite basis of "Pred("s).5

Note that De�nition 3.2 is distinct from the requirement for a basis of Pred(" s) usedin [A�CJY96]. Our de�nition is necessary for the generalized Theorem 3.6 we aims at.Now assume that S is a WSTS with e�ective pred-basis. Pick Ib a �nite basis of I and de�nea sequence K0; K1; : : : of sets with K0 def= Ib, and Kn+1 def= Kn[pb(Kn). Let m be the �rst indexsuch that "Km = "Km+1. Such an m must exist by Lemma 2.4.Lemma 3.3. "Km = "Si2NKi.Proof. This is not a consequence of Lemma 2.4 but rather of"Y = "Y 0 implies "pb(Y) = "pb(Y 0):which relies on the de�nition of pb and the distributivity property of Pred and "w.r.t. union.Lemma 3.4. "SKi = Pred�(I).Proof. Use induction over n and show thatKn � "Kn � Pred�(I) (= "Pred�(I))On the other hand, the de�nition of pb entails "Predn(I) � "Kn, so thatPred�(I) � [i2N "Ki � "[i2NKi � "Pred�(I):Proposition 3.5. If S is a WSTS with (1) e�ective pred-basis and (2) decidable �, then it ispossible to compute a �nite basis of Pred�(I) for any upward-closed I given via a �nite basis.Proof. The sequence K0; K1; : : : can be constructed e�ectively (each Kn is �nite and pb ise�ective). The index m can be computed because the computability of � entails the decidabilityof \ " K = " K 0 ?" for �nite sets K and K 0. Finally, Km is a computable �nite basis ofPred�(I).The covering problem is to decide, given two states s and t, whether starting from s it is possibleto cover t, i.e. to reach a state t0 � t.The covering problem is often called the \control-state reachability problem" when S has theform Q�D (for Q a �nite set of so-called \control states") and (q; d) � (q0; d0) entails q = q0.Theorem 3.6. The covering problem is decidable for WSTS's with (1) e�ective pred-basis and(2) decidable �.Proof. Thanks to Proposition 3.5, one can compute K, a �nite basis of Pred�(" t). It is possibleto cover t starting from s i� s 2 " K. By decidability of �, it is possible to check whethers 2 "K.Variants of this problem can be decided in the same way. E.g. deciding whether t can be coveredfrom all states in a given upward-closed I . Or from all states in a downward-closedD = SnI (thisrequires WSTS's with intersection-e�ectiveness, i.e. there is an algorithm computing inter(s; s0),a �nite basis of "s \ "s0). 6

4 Tree-saturation methodsWe speak of tree-saturation methods when we have methods representing (in some way) allpossible computations inside a �nite tree-like structure. In this section, we illustrate the ideawith the Finite Reachability Tree and its several applications to termination, inevitability, andboundedness problems.Other examples of the tree-saturation idea is the algorithm for simulation of a �nite statesystems (from [A�CJY96]), and the algorithm for coverability-sets (from [Fin87a]).We assume S = hS;!;�i is a WSTS.4.1 Finite reachability treeDe�nition 4.1. [Fin90] For any s 2 S, FRT (s), the Finite Reachability Tree from s, is adirected unordered tree where nodes are labeled by states of S. Nodes are either dead or live.The root node is a live node n0, labeled by s (written n0 : s). A dead node has no child node. Alive node n : t has one children n0 : t0 for each successor t0 2 Succ(t). If along the path from theroot n0 : s to some node n0 : t0 there exists a node n : t (n 6= n0) such that t � t0, we say that nsubsumes n0, and then n0 is a dead node. Otherwise, n0 is live.Thus leaf nodes in FRT (s) are exactly (1) the nodes labeled with terminal states, and (2)the subsumed nodes. See Part II for examples.Lemma 4.2. FRT (s) is �nite (hence the name).Proof. The wqo property ensures that all paths in FRT (s) are �nite because an in�nite pathwould have to contain a subsumed node. Finite branching and K�onig's lemma conclude theproof.With �niteness, we observe that FRT (s) is e�ectively computable if S has (1) a decidable �,and (2) e�ective Succ (i.e. the Succ mapping is computable).The construction of FRT (s) does not require compatibility between � and !. However,when we have compatibility, FRT (s) contains, in a �nite form, su�cient information to answerseveral questions about computations paths starting from s. For a start, we haveLemma 4.3. Any computation starting from s has a �nite pre�x labeling a maximal path inFRT (s).Proof. Obvious.Further results need slightly restricted notions of compatibility: transitive compatibility andstuttering compatibility.4.2 Transitive and stuttering compatibilityDe�nition 4.4. A WSTS S has strong compatibility if for all s1 � t1 and transition s1 ! s2,there exists a transition t1 ! t2 with s2 � t2.S has transitive compatibility if for all s1 � t1 and transition s1 ! s2, there exists a non-empty sequence t1 ! t2 ! � � � ! tn with s2 � tn.7

S has stuttering compatibility if for all s1 � t1 and transition s1 ! s2, there exists a non-empty sequence t1 ! t2 ! � � � ! tn with s2 � tn and s1 � ti for all i < n.S has re
exive compatibility if for all s1 � t1 and transition s1 ! s2, either s2 � t1 or thereexists a transition t1 ! t2 with s2 � t2.See Figure 2 for a diagrammatic presentation of these re�nements of compatibility.PSfrag replacements
8 9s1s2 t1t2t2tn�1tn �� 1(a) strong

PSfrag replacements
8 9s1s2 t1t2t2tn�1tn ��1 +(b) transitive

PSfrag replacements
8 9s1s2 t1t2 t2tn�1tn��1+ (c) stuttering

PSfrag replacements
8 9s1s2 t1t2t2tn�1tn ��1+ =(d) re
exiveFigure 2: Transitive and stuttering compatibilityStrong compatibility (also called \1-1 compatibility") is inspired from classical strong simu-lation and the other forms of compatibility we use are more general than this.Re
exive compatibility is strong compatibility for =!.Transitive compatibility is slightly less general than the \re
exive-and-transitive" compat-ibility we used in Def. 2.5. Finkel's notion of \3-structured systems" [Fin90] uses transitivecompatibility in a framework where labels of transitions are taken into account.Stuttering compatibility, introduced in [KS97a], is less general than transitive compatibility.The name comes from \stuttering" [BCG88] (also \branching" [GW89]) bisimulation. Both aremore general than strong compatibility.In practice, the strong, \1-1", notion used by Abdulla et al. is much more limited thanappears at �rst sight. Clearly, their motivation was the decidability of simulation with a �nite-state system. Unfortunately most examples do not have strong compatibility, so that for e.g.Lossy Channel Systems they have to modify the semantics of the model.More generally, when S = hS;!;�i is a WSTS, then S� def= hS; �!;�i has strong, \1-1",compatibility, but it is not necessarily a WSTS. S� is in general not �nitely branching. Worse,when e�ectiveness issues are taken into account, S� needs not have e�ective Succ or pred-basiseven when S has. Finally, the inevitability properties investigated in [A�CJY96] do not translatefrom �! (or +!) to !.4.3 TerminationAssume S is a WSTS with transitive compatibility.Proposition 4.5. S has a non-terminating computation starting from s i� FRT (s) contains asubsumed node.Proof. ()): Consider a non-terminating computation. A �nite pre�x labels a path in FRT (s)(Lemma 4.3). The last node of this path is a leaf node, not labeled with a terminal state, hence8

a subsumed node.((): If n2 : t2 is the leaf node subsumed by n1 : t1, we have s �! t1 +! t2 with t1 � t2.Transitive compatibility allows to infer the existence of some t2 +! t3 with t2 � t3. Repeatingthis reasoning, we build an in�nite computation starting from s.Hence we haveTheorem 4.6. Termination is decidable for WSTS's with (1) transitive compatibility, (2) de-cidable �, and (3) e�ective Succ.4.4 Eventuality propertiesAssume S is a WSTS with stuttering compatibility.Proposition 4.7. [KS97a] Assume I is upward-closed. There exists a computation startingfrom s where all states are in I i� FRT (s) has a maximal path where all nodes are labeled withstates in I.Proof. ()): Use Lemma 4.3.((): Assume that n0 : t0; : : : ; nk : tk is a maximal path in FRT (s) with all labels in I . If nk isa live node, then t0 ! t1 ! � � � tk is a computation and we are done. If nk is a dead node, thenwe display an in�nite computation (s =) s0 ! s1 ! � � � where all states are greater (w.r.t. �)than one of the ti's, and thus belong to I .We de�ne the si's inductively, starting from s0 def= s (= t0). Assume we have already builts0; : : : ; sn. We have sn � ti for some i � k. There are two cases:� i < k: then ti ! ti+1. Because of stuttering compatibility, there exists a sequence sn !� � � ! sm (m > n) with sn; : : : ; sm�1 � ti and sm � ti+1. We use them to lengthen oursequence up to sm.� i = k: then, because nk is dead, tj � tk for some j < k. Thus tj � sn, so that we are backto the previus case and can lengthen our sequence.Now we can generalize a Theorem from [A�CJY96].The control-state maintainability problem is to decide, given an initial state s and a �niteset Q = ft1; : : : ; tmg of states, whether there exists a computation starting from s where allstates cover one of the ti's. The dual problem, called the inevitability problem, is to decidewhether all computations starting from s eventually visit a state not covering one of the ti's.Concrete examples abound. See Part II. E.g. for Petri nets, we can ask whether a given placewill inevitably be emptied.Theorem 4.8. The control-state maintainability problem and the inevitability problem are de-cidable for WSTS's with (1) stuttering compatibility,(2) decidable �, and (3) e�ective Succ.Proof. Thanks to Proposition 4.7, the control-state maintainability problem reduces to checkingwhether FRT (s) has a maximal path with all labels in "Q.9

4.5 Strict compatibilityFinkel [Fin90] also considered WSTS's with strict compatibility. Strict compatibility is a strongerform of compatibility.De�nition 4.9. A WSTS S has strict compatibility if for all s1 < t1 and transition s1 ! s2,there exists a sequence t1 �! t2 with s2 < t2.Note that strict compatibility already requires normal non-strict compatibility by assumingthat S is a WSTS. When � is a partial ordering, strict compatibility alone entails non-strictcompatibility. We adopted the more general de�nition for situations where � is a quasi-ordering.Strict compatibility means that from strictly larger states it is possible to reach strictly largerstates. See Figure 3 for a diagrammatic presentation. Of course the concept can be combined
PSfrag replacements89s1s2t1t2t2tn�1tn��8 9s1s2 t1t2<< � and

PSfrag replacements89s1s2t1t2t2tn�1tn��8 9s1s2 t1t2<< ���Figure 3: Strict compatibilitywith transitive, stuttering, : : : compatibility.When we have strict compatibility, the Finite Reachability Tree contains information per-taining to the �niteness of the number of reachable states. Assume that S = hS;!;�i is aWSTS with strict transitive compatibility. Further, assume that � is a partial ordering (not aquasi-ordering).Proposition 4.10. For any s 2 S, Succ�(s) is in�nite i� FRT (s) contains a leaf node n : tsubsumed by an ancestor n0 : t0 with t0 < t.Proof. ((:) If n : t is subsumed by n0 : t0 then S admits an in�nite computation s �! t0 +! t1 +!t2 : : : with ti < ti+1 for all i = 0; 1; 2; : : : . This computation is easily built inductively by pickingt0 = t and t1 = t0. Then, strict transitive compatibility allows us to deduce, from ti�1 +! ti andti�1 < ti the existence of a ti +! ti+1 with ti < ti+1. Then the ti's are all distinct and Succ�(s)is in�nite.():) Assume Succ�(s) is in�nite. We �rst show that there exists a computation starting froms without any loop, i.e. where all states are distinct. For this, we cannot simply remove loopsfrom an in�nite computation as this may well result into a �nite pre�x only. So we ratherconsider the (�nitely branching) tree of all pre�xes of computations. Now prune this tree byremoving all pre�xes with a loop. Because any reachable state can be reached without a loop,the pruned tree still contains an in�nite number of pre�xes. Now K�onig's lemma gives us anin�nite computation with no loop.We now apply Lemma 4.3 to this computation: this provides a node n : t subsumed by n0 : t0with t 6= t0. Hence t0 < t because � is a partial ordering.Now we can generalize a Theorem from [Fin90].The boundedness problem is to decide, given a TS S and some state s 2 S, whether Succ�(s),the \set of reachable states", is �nite. 10

Theorem 4.11. The boundedness problem is decidable for WSTS's with (1) strict transitivecompatibility, (2) a decidable � which is a partial ordering, and (3) computable Succ.Proof. We can apply Prop. 4.10 so that it is enough to build FRT (s) and inspect it for asubsumed node with strict subsumption. This can be done when Succ and � are e�ective.5 Downward-WSTS'sThere also exists a notion of downward-WSTS, �rst introduced in [KS97a] for the RPPS model.We generalize it toDe�nition 5.1. A downward-WSTS is a TS S = hS;!;�i equipped with a qo �� S � Sbetween states such that the two following conditions hold:(1) well-quasi-ordering: � is a wqo, and(2) downward-compatibility: � is downward-compatible with !, i.e. for all s1 � t1 andtransition s1 ! s2, there exists a sequence t1 �! t2 such that s2 � t2.See Figure 4 for a diagrammatic presentation of downward-compatibility. Downward-WSTS's
PSfrag replacements89s1s2t1t2t2tn�1tn��8 9s1s2 t1t2�� �Figure 4: Downward compatibilityhave been less investigated, partly because only a few recent models give rise naturally toWSTS'swith downward-compatibility. In Part II, we shall see several examples.Assume S = hS;!;�i is a downward-WSTS with re
exive compatibility and K;K 0 are twosets of states.Lemma 5.2. "K � "K 0 implies "Succ=(K) � "Succ=(K 0).Proof. (Recall that Succ=(K) is K [Succ(K).) Assume s 2 " Succ=(K). Then there exists1 2 K and t1 with s1 =! t1 � s. Because "K � "K 0, there is a s2 2 K 0 with s2 � s1. BecauseS is a downward-WSTS with re
exive compatibility, there exists a s2 =! t2 with t2 � t1. Hencet2 � s. Now t2 2 Succ=(K 0) entails s 2 "Succ=(K 0).Now assume s 2 S and de�ne a sequence K0; K1; : : : of sets with K0 def= fsg, and Kn+1 def=Kn [Succ(Kn). Let m be the �rst index such that "Km = "Km+1. Such an m must exist byLemma 2.4.Lemma 5.3. "Km = "Si2NKi = "Succ�(s).Proof. The �rst equality is a direct consequence of Lemma 5.2, the second follows from thede�nition of the Ki's. 11

Proposition 5.4. If S is a downward-WSTS with (1) re
exive compatibility, (2) e�ective Succ,and (3) decidable �, then it is possible to compute a �nite basis of "Succ�(s) for any s 2 S.Proof. We proceed as with Prop. 3.5, The sequence K0; K1; : : : can be constructed e�ectively(each Ki is �nite and Succ is e�ective). The index m can be computed by computability of �.Finally, Km is a computable �nite basis of "Succ�(s).The sub-covering problem is to decide, given two states s and t, whether starting from s it ispossible to be covered by t, i.e. to reach a state t0 � t.Theorem 5.5. The sub-covering problem is decidable for downward-WSTS's with (1) re
exivecompatibility, (2) e�ective Succ and (3) decidable �.Proof. Thanks to Proposition 5.4, one can compute K, a �nite basis of "Succ�(s). It is possibleto be covered by t starting from s i� t 2"K. By decidability of �, it is possible to check whethert 2 "K.Part IIThe ubiquity of WSTS'sIn this second part we review several fundamental computational models and discover instancesof WSTS's in these frameworks.In general, all the well-structured systems we mention enjoy the e�ectiveness requirementsassumed e.g. by Theorems 3.6, 4.6, 4.8 and 5.5. We will not state this explicitly every time. Infact, we mainly state the few exceptions, all of them occurring when we use a non-trivial � forwhich decidability is lost.6 The well-structure of Petri netsPetri nets are a well-known model of concurrent systems. See [Pet81, Rei85] for a generalpresentation.Formally a net N = hPN ; TN ; FN i has a �nite set PN of places, a �nite set TN of transitions(with PN \ TN = ;) and a
ow matrix FN : (PN � TN [TN � PN) ! N. Figure 5 containsan example net. The con�gurations of a net N are markings, which can be seen as PN -indexedPSfrag replacements89s1s2t1t2t2tn�1tn��p1p2 p3 p4t1 t2
t3Figure 5: A Petri net12

vectors of non-negative integers, or as multisets of places. The markingM0 depicted in Figure 5is denoted fp1; p1; p2; p3g or p21p2p3.The simplest ordering between markings is inclusion: M �M 0 whenM(p) �M 0(p) for everyplace. That it is a wqo is known as Dickson's lemma [Dic13].Petri nets with inhibitory arcs extend the basic model with special \inhibitory" arcs (alsocalled \zero-test" arcs) that forbid (inhibit) the �ring of a given transition when a given placeis not empty.Petri nets with transfer arcs [Cia94] extend the basic model with special \transfer" arcs. Heretransitions �re as usual but their e�ect is richer: the transfer arcs say whether the full contentof some place must be transfered (added) to some other place.Petri nets with reset arcs [Cia94] extend the basic model with special \reset arcs" telling howthe �ring of some transitions resets (empties) some places.Self-modifying nets [Val78] are Petri nets where the weight on arcs is not a constant anymore.Rather it is an expression evaluating into a linear combination (with non-negative coe�cients)of the current contents of the places. Post self-modifying nets are self-modifying nets where theself-modifying extension is only allowed on \post" arcs (arcs from transitions to places).In all these extensions, reachability becomes undecidable [AK77, Val78]. HoweverTheorem 6.1. Using the inclusion ordering,1. Petri nets are WSTS's with strong strict compatibility,2. Petri nets with transfer arcs are WSTS's with strong strict compatibility,3. Petri nets with reset arcs are WSTS's with strong compatibility,4. post self-modifying nets are WSTS's with strong strict compatibility.Proof. Obvious.So that e.g. covering is decidable for them ! Covering is a classical problem in the Petri net �eld.It was known to be decidable since [KM69]. As noted in [A�CJY96], a byproduct of Theorem 3.6is a backward-based algorithm for the covering problem in Petri nets. This also applies to thethree extensions (transfer arcs, reset arcs, post self-modifying nets) we mentioned.As far as we know, all implemented algorithms for this problem use Karp and Miller's cover-ability tree, or the coverability graph, or some such quite complex forward-based method. Thesemethods cannot be generalized to all extensions (e.g. it fails for reset arcs [DFS98]).Other orderings can turn Petri nets into WSTS's. Assume N = hP; T; F;M0i is a marked net(a net with a given initial marking M0). Say a place p 2 P is unbounded if there are reachable(from M0) markings with an arbitrarily large number of tokens in p. Separate bounded andunbounded places and write P = Pb [Pnb. Usually, one sees places in Pb as \control places"and places in Pnb as \data places" or \counter places".Now de�ne the orderingM �M 0 def, � M(p) =M 0(p) for all p 2 Pb;M(p) �M 0(p) for all p 2 Pnb:13

This is a well-ordering over the set of reachable markings. So that, if we associate to a markednet hN;M0i a transition system SN;M0 containing only the reachable markings we getProposition 6.2. hSN;M0;�i is a WSTS.This works for all the extensions like post self-modifying nets, etc. we mentioned earlier.However, the well-ordering is only decidable when we can tell e�ectively which places of thenet are bounded. This can be done for Petri nets and for post self-modifying nets. (For netswith reset arcs and nets with transfer arcs, telling whether a given place p is bounded is notdecidable [DFS98]).The partial bounded reachability problem is, given a marked net N;M0 and a marking M , totell whether from M0 it is possible to reach an M 0 with M 0(p) =M(p) for all p 2 Pb.Theorem 6.3. The partial bounded reachability problem is decidable for Petri nets and postself-modifying nets.Proof. The partial bounded reachability problem is an instance of the covering problem forhSN;M0;�i.The most surprising aspect of this result is the relative simplicity of the algorithmic notions thatare involved.Inhibitory arcs can be handled if we have no synchronization. BPP nets, short for BasicParallel Processes, are nets where the pre-set of transitions is reduced to a single place [CHM94,Mol96].Theorem 6.4. With the inclusion ordering, BPP's with inhibitory arcs are downward-WSTS'swith re
exive compatibility.Proof. Assume M1 �M 01 and M1 t! M2. If t is �rable in M 01 then M 01 t! M 02 and M2 �M 02. Ift is not �rable in M 01 then this cannot be caused by an inhibitory arc because M1 �M 01. HenceM 01 does not contain pre(t). But pre(t) is some place p, so that M1 � fpg � M 01. Now M2 isM1 � fpg+ post(t) and M2 �M 01.7 The well-structure of string rewrite systemsA Context-Free Grammar (CFG) is a tuple G = hNG; TG; RGi where NG (the non-terminalsymbols) and TG (the terminal symbols) are disjoint alphabets and where, writing �G for NG [TG, RG � NG � ��G is a �nite set of production rules of the form X ! w. See [ABB97] fordetails.Here is an example where we group right-hand sides related to a common left-hand sidesymbol. G : S ! XY j aSSX ! bY j �Y ! XXThe rules in RG induce a notion of rewrite step: if X ! w is in RG then uXv!G uwv for anyu; v. Usually, we are interested in derivation sequences that start from a given, so-called axiom,non-terminal, and end up with a word in T �G. 14

In our previous example, a possible derivation for the terminal word b isS !G XY !G XXX !G bY XX !G bY X !G bY !G bXX !G bX !G b (1)If instead of focusing on the language generated by G, we emphasize the rewrite steps, thenG gives rise to a transition system SG where states are words in �� and (1) now is a completecomputation of SG, starting from S.Several natural orderings can be de�ned between words:embedding: a word u embeds into a word v (also u is a subword of v), written u 4 v, i� u canbe obtained by erasing letters from v.left-factor: a word u is a left-factor (also, a pre�x) of a word v, written u �lf v, i� v is someuw.Parikh: u �P v i� a permutation of u is a subword of v.subset: u � v i� any symbol in u is in v.4, �lf are po's while �P, and � are qo's. Assuming a �nite alphabet, 4 is a wqo (Higman'sLemma) while �lf is not. Being larger than 4, both �P and � are wqo's.Theorem 7.1. For any CFG G,1. hSG;4i is a WSTS with strong strict compatibility,2. hSG;�Pi is a WSTS with strong strict compatibility,3. hSG;�i is a WSTS with strong compatibility.Proof. Left as an easy exercise.When it comes to applications, the precise choice of which ordering we consider is quite relevantbecause many decidable properties for WSTS's (e.g. coverability) are expressed in terms of theordering itself. When a choice is possible, using a larger ordering will often yield less informationbut more e�cient algorithms.We illustrate this on two di�erent well-structured views of context-free grammars. Fig. 6displays FRT (S) for hSG;4i. Even though G is quite simple, there FRT (S) has 96 nodes.When we switch to the hSG;�i view (see Fig. 7) FRT (S) is a subtree of the previous tree andonly has 20 nodes.Of course, there exist many extensions of CFG's which remain partly analyzable. E.g. permu-tative grammars [M�ak85] are grammars where context-sensitive permutative rules \xS ! Sx"are allowed (between any pair of symbols).Theorem 7.2. For any permutative grammar G, hSG;4i is a downward-WSTS with re
exivecompatibility.Proof. Left as an easy exercise.A machine model related to CFG's are stack automata (also pushdown processes). Con�gu-rations have the form hq; wi where q is a control-state and w 2 �� is a stack-content. Quasi-orderings between words lead to quasi-orderings between con�gurations of a stack automaton.E.g. with hq; wi �lf hq0; w0i def, q = q0 and w �lf w0:15

S
aSS �
��������������XYAAAUbY Y?

bXXY �?
bY XX(((((((((((((((:bXXXX !!!!!!!!)bbY XXX �	 bXXX@@@RbbYXX � 9 bXX?bbYX ����bbXXX �? bbY bY �ZZZZ~ bbYaaaaaaaaqbbXX ���
 bXaaaaaq bbY@@@RbbXX �? bbbbbbsbXbY �hhhhhhzbXbYX �PPPPPPqbXXbY �-bXbYXX �aaaaaq bXXbYX �hhhhhhhzbXXXbY �(((((((: bY bY X �llllll~bY XbY �hhhhhhhz bY Xaaaaaaaaaaaj

bXXXDDDDDDDDDDDW bbYXX �@@@@RbXXHHHj bbY X �HHHj bX- bbY- bbXX �Rb���*bXbY ����*bXbYX �-bXXbY ����*bY bY �@@@@RbY- bXX- bbY X �HHHj bX- bbY �XXXz b���:bXbY ����*

XXX
��������������

��������������� bY XX
BBBBBBBBBBBBBNbXXXX ����� bY bY X@@@@@@R bXXbYX �llllll~ bY bXXX �aaaaaaaaq bY bY bY- bXXbY bY �HHHHHHjbY bXXbY �hhhhhhzbY bY bXX �������1bY bY!!!!!!!!1 bXXbY �XXXzbY bXX ����:bY X

� bXXX �JJJJJĴ bY bYHHHHHHHHHHHHHHj bXXbY �hhhhhhzbY bXX �((((((:

bY���� bXX- bbYX �@@@R bX```z̀ bbY �BBN bQQsbXbY ����:bY XbY �������������
XX(((((((((((((((((((((- bY X@@@@R bXXX �@@@@@@RbY bYPPPPPPq bXXbY �HHHjbY bXX ����*bY������1 bXX �-X- bY- bXX �-����*XbY ����*XbYX �

�XXbY �AAAK

Y* XX- bY X �@@RX- bY �HHj ���*XbY ����

Figure 6: FRT (S) in hSG;4i. \�" marks subsumed nodes16

S
aSS �
��������������XYAAAUbY Y?

bXXY �?
bY XX �(((((((((((((((:

XXX
��������������

��������������� bY XX
BBBBBBBBBBBBBNbXXXX ����� bY bY X �@@@@@@R

bY X �

�bY XbY �������������
XX �(((((((((((((((((((((-XbYX �

�XXbY �AAAK

Y* XX- bY X �@@RX �-XbY ����

Figure 7: FRT (S) in hSG;�i. \�" marks subsumed nodes17

For stack-automata, the �lf ordering is compatible with transitions but it is not a wqo (unlesswe restrict the set of con�gurations). 4 is a wqo but it is not compatible with transitions (unlesswe consider subclasses of stack automata).8 The well-structure of Basic Process AlgebraMilner's CCS [Mil89] is the paradigmatic process algebra. Recently, several fragments of CCSwith good decidability properties have been investigated [CHM94, Mol96]. Here we focus onBPA.BPA, short for Basic Process Algebra, is a subset of CCS �rst studied in [BBK87] where onlypre�xing, non-deterministic choice, sequential composition and guarded recursion are allowed.Here is an example BPA declaration:� : X := aY X + bX + cY := bXX + aand a possible derivation isX a!� Y X b!� XXX c!� XX c!� � � � (2)BPA systems can be seen as CFG's with head-rewriting (we lose head-rewriting when we re-place sequential composition by parallel composition, yielding BPP's). Here the states of S�are words in N�� because the symbols in T� are not stored in the state.Because of the head-rewriting strategy, BPA systems do not have transitions compatible withword-embedding. E.g. if in the previous example, we consider Y 4 XYX and step Y b!� XX ,we cannot �nd some v0 with XYX !� v0 and XX 4 v0. (Here as with stack automata, theleft-factor ordering is compatible with head-rewriting but it is not a wqo.)However, if we restrict ourselves to Normed BPA (a class �rst introduced in [BBK87]) we can�nd a well-structure. Formally, a BPA process is normed if it admits a terminating behavior.A BPA declaration is normed if all its processes are normed. From a CFG viewpoint, thiscorresponds to grammars in Greibach normal form and without useless productions. E.g. ourexample � above is a normed BPA declaration.With Normed BPA, the di�culty with head-rewriting can be circumvented.Theorem 8.1. For a Normed BPA declaration �, hS�;4i is a WSTS with stuttering compat-ibility.Proof. Assume u 4 v and u!� u0. Thus u 6= �. u has the form Xu1 and u0 is some wu1 whereX !� w.Because u 4 v, v has the form Y1 : : :YmXv1 with u1 4 v1. With normedness, there mustexist sequences �1; : : : ; �m of transitions such that Yi �i!� � for i = 1; : : : ; m. Then there existsa sequence Y1 : : : YmXv1 �1!� Y2 : : :YmXv1 �2!� � � � �m!� Xv1 !� wv1so that stuttering compatibility is established.18

Without any normedness hypothesis, a well-structured view of BPA processes is still possible:Theorem 8.2. For any BPA declaration �, hS�;4i is a downward-WSTS with re
exive com-patibility.Proof. Left as an easy exercise.9 The well-structure of Communicating Finite State MachinesA Communicating Finite State Machine (CFSM) [Boc78, BZ83] can be seen as a Finite StateAutomaton (FSA) hQ;�; : : :i equipped with a collection c1; : : : ; cn of n �fo channels. A transi-tion of the FSA is labeled with a send action (e.g. q ci !a! q0) or a receive action (e.g. q ci?a! q0).A CFSM C naturally gives rise to a transition system SC : a con�guration of SC is somes = hq; w1; : : : ; wni where q 2 Q is a control state of the FSA, and each wi 2 �� is a worddescribing the current content of channel ci. In con�guration s = hq; w1; : : : ; wni, transitionq ci !a! q0 is possible, reaching s0 = hq0; w1; : : : ; wi�1; wi:a; wi+1; : : : ; wni, a new con�gurationwhere the control state is now q0 and where the sent symbol a has been appended after wi. In s,transition q ci?a! q0 is only possible if channel ci contains an a in �rst position, i.e. if wi is somea:w0. Then we reach hq0; w1; : : : ; wi�1; w0; wi+1; : : : ; wni.Fig. 8 shows an example where P1 and P2 are two di�erent automata communicating via two�fo channels. This gives a CFSM CP1;P2 if we see P1 and P2 as one single global FSA.
PSfrag replacements89s1s2t1t2t2tn�1tn��p1p2p3p4t1t2t3P1 : P2 :c1c2p0

p1
q0
q1c1!a c1!bc2?c c1?a c1?b c2!cFigure 8: A Communicating Finite State MachineA possible behavior for this example ishp0q0; �; �i c1!a! hp1q0; a; �i c1!b! hp0q0; a:b; �i c1?a! hp0q1; b; �i c2!c! hp0q0; b; ci ! � � � (3)Because the channels are unbounded, SC is in general an in�nite TS.Fifo nets [MF85] are an extension of Petri nets where every place contains a �fo queue ofmessages (instead of the usual tokens). Basically, �fo nets are CFSM's with an explicit parallelstructure and more general synchronization primitives.19

Several orderings between con�guration are derived from orderings between words. E.g.hq; w1; : : : ; wni 4 hq0; w01; : : : ; w0ni def, � q = q0 andwi 4 w0i for i = 1; : : : ; nand similarly for �lf . �lf is quite natural but it is still not compatible with the transitions of aCFSM (unlike the pushdown automata case) and it is not a wqo. 4 and �P are wqo's but theyare not compatible with the transitions.It turns out that both CFSM's and �fo nets are Turing-powerful [BZ83, MF85]. Hence therecannot exist a general e�ective well-structure for CFSM's.However, for many classes of CFSM's, there exist interesting decidable problems. The restof this section considers di�erent subclasses and their well-structure.9.1 Free choice �fo nets, completely speci�ed protocols and lossy channelsystemsThese three models have many similarities. They are very useful when modeling systems as-suming unsafe communication links, e.g. the alternating bit protocol.Free choice �fo nets [FC87] are a subclass of �fo nets that are free from any deadlock causedby the order of messages in the queues. Formally, in a free choice �fo net, whenever a place p hasmore than one possible output transition (this corresponds to a receive action in CFSM speak)then all these transitions only depend on p. This ensures that any message in a �fo queue mayeventually be output without deadlock [FC87].Completely speci�ed protocols [Fin94] are CFSM's in which every control state q admits thereceive actions q ci?a! q for every action a. This action e�ectively \looses" a without changingthe current con�guration.Lossy channel systems [AJ93, AJ94] are CFSM's with a modi�ed semantics allowing the lossof messages: in any con�guration the system may loose any symbol from any channel. I.e. anytransition hq; w1; : : : ; wni ! hq; w1; : : : ; w0i; : : : ; wni is possible when w0i is obtained by removingone symbol from wi.Theorem 9.1. With the 4 (subword) ordering, free choice �fo nets, completely speci�ed proto-cols, and lossy channel systems are WSTS with stuttering compatibility.Proof. Left as an easy exercise.9.2 CFSM's with insertion errorsC�ec�e et al. introduced CFSM's with insertion errors [CFP95]. These are CFSM's with amodi�ed behavior: at any time, arbitrary symbols (noise) can be inserted anywhere in thechannels. These too can be seen as well-structured systems, but not as easily as lossy channelsystems.First, when we consider!�1, the transition relation backward, CFSM's with Insertion Errorsare exactly lossy channel systems. This view can be useful for reachability analysis, and it helpsunderstand why [CFP95] considered forward analysis on CFSM's with Insertion Errors, rather20

than the usual backward analysis based on iterated pred-basis.Another possibility uses forward transitions and the natural subword ordering:Theorem 9.2. For C, a CFSM with Insertion Errors, hSC ;4i is a downward-WSTS with stut-tering compatibility.Proof. Left as an easy exercise.9.3 Monogeneous CFSM'sMore involved orderings may be used. For example, consider CP1;P2 from Fig. 8. It has transi-tions compatible with v, de�ned byhpiqj ; w1; w2i v hpi0qj0 ; w01; w02i def, 8>><>>: pi = pi0 and qj = qj0 ; andw01 2 w1:(ab)� if i = i0 = 0, andw01 2 w1:(ba)� if i = i0 = 1, andw02 2 w2:c�This variation around the left-factor ordering is not a well-ordering in general, but it is a well-ordering on Q1 � Q2 � [(ab)� + (ab)�a]� c�, a set containing all the reachable states of CP1;P2 .The same approach can be generalized to all Monogeneous CFSM's [Fin82, Fin86].Given a sequence � of transitions �rable from a con�guration s = hq; w1; : : : ; wni, we writeout(�) for the vector (u1; : : : ; un) of sequences of messages output (sent) by �. Then s:out(�)denotes hq; w1u1; : : : ; wnuni.We de�ne an ordering � between con�gurations withs� s0 def, s:out(�) �lf s0:out(�) for all sequences � �rable from s.Monogeneous �fo nets are �fo nets where the send actions follow a certain regularity. See [Fin82,Fin88] for details. � is a (decidable) wqo over the reachable states of monogeneous �fo nets. Ithas strong compatibility.Theorem 9.3. [Fin86] With �, monogeneous �fo nets (and CFSM's) are WSTS's with strongcompatibility.Proof. Omitted.9.4 Other familiesC�ec�e [C�ec93] used a complicated ordering to show that Synchronizable CFSM [GR85] areWSTS's with strict compatibility. It is also possible to show that half-duplex CFSM's [CF97]are well-structured.10 Miscellaneous modelsThere exist several other examples of WSTS's that we do not present at any length.Some families are trivial, and we only mention them to show that WSTS's generalize manythings: 21

� Finite state systems are WSTS's with strong strict compatibility just by taking equalityas a wqo.� More interestingly, all systems where an in�nite set of states can be partitioned into a �nitenumber of equivalence classes can be turned into WSTS's if the notion of equivalence oneassumes enjoys the compatibility requirements.For instance, several variants of bisimulation have the compatibility requirements we men-tioned. By de�nition, this applies to the data-independent systems of [JP93]. Similarly,timed-automata [AD94] and some hybrid automata [Hen95] can be seen as WSTS's.Some families are issued from models less well-known than Petri nets or context-free gram-mars:� The integral relational automata of [�Cer94] are some kind of counter machine where thecontents of counters can be compared and moved around but no addition or subtractionis allowed. The can be seen as some kind of WSTS's though they are in�nitely branchingbecause of input actions.� The Recursive Parallel Program Schemes of [KS97a, KS97b] are some kind of nets witha restricted form of synchronization and where markings have a hierarchical, tree-like,structure. Two di�erent wqo's turn them into WSTS's or downward-WSTS's.� Using the fact that (several di�erent notions of) embedding between graphs are wqo's,it is possible to �nd WSTS's in the �eld of graph-grammars and graph-rewriting sys-tems [Cou90].Other families of WSTS's are obtained by applying simple general restrictions or structuringmodi�cations to well-known models:� The lossy system idea. It can be applied to many models: Lossy Turing Machines,Lossy Counter Machines, etc. Admittedly, a CFSM with lossy bu�ers is more realisticthan a Turing Machine with lossy memory.� The home-state idea. An home-state is a state that can be reached from any reachablestate. If the initial state s0 of some S is a home state, then the trivial ordering S � Sis a wqo with stuttering compatibility because any step s1 ! s2 can be mimicked fromany other state s01 simply with s01 �! s0 �! s1 ! s2. If we take a less trivial wqo, e.g.control-state equality, we have a WSTS with transitive compatibility.Clearly, by adding a simple general \s ! s0" transition, it is possible to modify mostmodels so that their initial state is a home state, turning the model into a resetablevariant that is a WSTS. The behavior of the resetable variant has obvious relations withthe behavior of the previous untouched system (agreed, the resetable variant does notterminate).We shall let the reader ponder on an interesting exercise: what can be inferred by tryingto apply our �ve decidability results on Resetable Turing Machines ?22

Part IIIFrom transition systems to well-structuredtransition systems11 WSTS's everywhereClearly, the several examples we presented in Part II followed a common scenario: we inves-tigated well-known operational models of computation, and exhibited wqo's that enjoyed oneform or compatibility or another. Often the wqo was suggested by the precise nature of thestates (words, tuples of integers, : : :) and then compatibility sometimes relied on restrictionson the possible transitions. Sometimes the wqo was quite surprising.In this section, we would like to discuss in more general terms the problem of turning a givenTS into a WSTS.This is a quite natural and interesting question. No mention of this question is madein [A�CJY96]. Finkel only discussed it in his habilitation thesis [Fin86] where he showed thatthere is a largest compatible well-ordering and that this ordering is not decidable between mark-ing of Petri nets. However, his analysis su�ers from the problems we raised in the introductionof this article so that no clear and general answer is o�ered.Our main result in this section isTheorem 11.1. (Ubiquity.) For any TS S, there is a wqo �T such that hS;�Ti is a WSTSwith strict strong compatibility.Proof. Consider S = hS;!i and, for s 2 S, de�ne T (s) as the length of a longest computationstarting from s (such a longest computation exists because our TS's are �nitely branching). T (s)belongs to �N def= N [f!g. De�ne s �T s0 as T (s) � T (s0). �T is a wqo (induced by the naturalwqo over �N).There remains to check strict strong compatibility. So consider T (s1) � T (s01) and s1 ! s2If T (s01) = ! then s01 admits a non-terminating computation and there is a transition s01 ! s02with T (s02) = !. Otherwise T (s01) = n � T (s1) and T (s2) < T (s1) so that n > 0 and there existsa s01 ! s02 with T (s02) = n� 1. In both cases T (s2) � T (s02). Additionally, if T (s1) < T (s01) thenT (s2) < T (s02).Furthermore �T is canonical in the following sense:Proposition 11.2. If hS;�i is a WSTS with transitive compatibility, then � ��T .Proof. Assume hS;�i is a WSTS with transitive compatibility and s1 � t1. Given any sequences1 ! s2 : : :! sn, transitive compatibility implies the existence of some t1 +! t2 : : : +! tn. Thenclearly T (s1) � T (t1).Theorem 11.1 tells us that all TS's can be well-structured. Even TS's issued from formalismswith Turing power. Because the TS associated to a Turing Machine has �nite branching ande�ective Succ, the �T wqo cannot be decidable in general, otherwise the decidability results fore�ective WSTS's would apply. Indeed we have23

Theorem 11.3. Assume S has e�ective Succ. Then �T is decidable among the states of S i�termination is decidable for states of S.Proof. ()): use Theorem 4.6.((): Assume termination is decidable and consider a state s. If s does not terminate, thenT (s) = !. If s terminates, it is easy to compute T (s) 2 N using the e�ectiveness of Succ (and�nite branching). Hence T is computable, so that �T is decidable.Finally, the �T wqo su�ers from two main drawbacks:� it is only computable when termination is decidable,� it lacks expressive power.Of course, the �rst inconvenient is shared with all compatible wqo's with transitive compatibility.The second inconvenient calls for more comments. Assume �T is decidable for some TS S.Pick two states s and t. Then, using Theorem 4.8 we can decide whether starting from s, thesystem inevitably reach a state not covered by t. This means, \inevitably reach a state fartherto termination than t" (in which case s itself was already not covered by t). Using Theorem 3.6,we can tell whether, starting from s, it is possible to cover t. Again \covering t" is not verymeaningful. It is much more meaningful to cover a marking of a Petri net (or a con�guration ofa CFSM) with the � (or 4) ordering than with the �T ordering.Except for Theorem 4.6 (termination), all the general decidability theorems we gave in thisarticle involve properties de�ned in term of the � ordering. They are mainly interesting when� itself is a rich quasi-ordering, re
ecting some structure of the con�gurations of the systemunder scrutiny. Note that the well-structuring wqo's we gave in Part II were all inspired by thestructure of the con�gurations.12 Labeled transition systemsTheorem 11.1 is possible because we considered TS's without labels. Here we brie
y considerlabeled TS's.De�nition 12.1. A labeled transition system (LTS) is a structure S = hS; L;!; : : :i whereL = fa; b; : : :g is a set of labels and !� S � L� S is a set of transitions.For LTS's it is possible to restrict the WSTS idea so that compatibility preserves labels. Thisis what [A�CJY96] and some proposals in [Fin90] assume. As explained in our introduction, wethink this viewpoint should be seen as a restriction of the general framework we set up in thisarticle.De�nition 12.2. A well-structured LTS (WSLTS) with strong compatibility is a LTS S =hS; L;!;�i equipped with a qo �� S � S between states such that the two following conditionshold:(1) well-quasi-ordering: � is a wqo, and(2) strong compatibility: � is compatible with !, i.e. for all s1 � t1 and transition s1 a! s2,there exists a transition t1 a! t2 such that s2 � t2.24

Here again our de�nition does not mix e�ectiveness and structural issues. It is possible tohave less restrictive compatibility that still preserves labels but we will not pursue this here.Here, compatibility in De�nition 12.2 really states that � is a simulation in the classical LTSunderstanding [Mil89]. Indeed, if we use v to denote the simulation quasi-ordering, and assumehS;�i is a WSLTS with strong compatibility, then � � v. Furthermore assuming that S is aLTS, we haveTheorem 12.3. There exists a � such that hS;�i is a WSLTS with strong compatibility i� vis a wqo over the states of S.Proof. If hS;�i is a WSLTS then ��v but any qo containing a wqo is itself a wqo. Reciprocally,if v is a wqo over the states of S, it is possible to pick � def= v and get a WSLTS.Observe that �T and v agree in the unlabeled case. In the labeled case, v is not always a wqoso that Theorem 12.3 can be used to prove that a given LTS admits no well-structured view,independently of e�ectiveness issues.For example, consider the BPA declaration� : X := a + aXaY := bXbHere the set of states reachable from Y contains all con�gurations anb for n > 0 and, over suchstates, v coincide with 4. Clearly it is not a wqo and, consequently, S� cannot be turned intoa WSLTS with strong compatibility.13 ConclusionIn this article we proposed a de�nition of well-structured transition systems that is both sim-pler and more general than the earlier proposals of Finkel and Abdulla et al.. Simplicity andgenerality come essentially from a clear separation of structural and e�ectiveness issues.The bene�ts of this new approach are multiple: simpler proofs, more general theorems, moreinstances of WSTS's. Regarding this last point, we would like to stress again that both Finkel'sand Abdulla et al.'s earlier de�nitions did not lead to that many examples of WSTS's. On theother hand, we easily exhibited instances of the generalized WSTS notion in several operationalmodels of computation. Figure 9 classi�es the examples we gave. Of course many more familiesof models exist and our list is (probably) far from exhaustive. We welcome any additionalexample that readers could provide.Directions for future work are numerous, some of them linked to methodological and practicalissues, some more theoretical. Clearly the issue of �nding well-structuring wqo's for givensystems is very important. We just started investigating it in Part III.Another general direction is to look for new decidability results. In this article we did notdescribe all existing results. We omitted the decision method for simulation with a �nite system(see [A�CJY96]) or the algorithm for the coverability set (see [Fin87a]). Still we believe there ismuch room for new decidability results. In all likelihood such results will have to make someadditional hypothesis or another, which may di�er from the hypothesis we used in this article.25

upward-WSTSdownward-WSTSstrictnon-strictstrongre
exivestutteringtransitivePetri nets � � � � � � � Petri Nets andtheirextensionspost self-modifying nets � � � � � � �Petri nets with transfer arcs � � � � � � �Petri nets with reset arcs � � � � � �BPP with inhibitory arcs � � �CFSM's with Lossy Channels � � � � CommunicatingFinite StateMachinesCFSM's with insertion errors � � � �Free-choice �fo nets � � � �Monogeneous CFSM's � � � � � � �Synchronizable CFSM's � � � � � � �BPA (Basic Process Algebra) � � � ProcessAlgebrasBPP (Basic Parallel Process) � � � � � � �Normed BPA � � � �Context-free grammars � � � � � � � StringRewritingPermutative grammars � � �RPPS Schemes � � � Misc. modelsRPPS Schemes with 4? � � � �Integral Relational Automata � � � � � �Timed Automata � � � � � �Essentially �nite systems � � � � � � GenericWSTS'sLossy systems � � � �Resetable systems � � � �(A � indicates presence, a � is presence implied by a stronger �.)Figure 9: Some families of well-structured transition systems
26

References[ABB97] J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata.In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, chap-ter 3, pages 111{174. Springer-Verlag, 1997.[A�CJY96] P. A. Abdulla, K. �Cer�ans, B. Jonsson, and T. Yih-Kuen. General decidability theorems forin�nite-state systems. In Proc. 11th IEEE Symp. Logic in Computer Science (LICS'96), NewBrunswick, NJ, USA, July 1996, pages 313{321, 1996.[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,126(2):183{235, 1994.[AJ93] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proc. 8thIEEE Symp. Logic in Computer Science (LICS'93), Montreal, Canada, June 1993, pages160{170, 1993.[AJ94] P. A. Abdulla and B. Jonsson. Undecidability of verifying programs with unreliable channels.In Proc. 21st Int. Coll. Automata, Languages, and Programming (ICALP'94), Jerusalem,Israel, July 1994, volume 820 of Lecture Notes in Computer Science, pages 316{327. Sprin-ger-Verlag, 1994.[AJ97] P. A. Abdulla and B. Jonsson. Model-checking through constraint solving. In Methods andTools for the Veri�cation of In�nite State Systems, Proceedings of the Grenoble-Alpe d'HuezEuropean School of Computer Science, May 23{25, Grenoble, France. VERIMAG, St-Martind'H�eres, France, 1997.[AK77] T. Araki and T. Kasami. Some decision problems related to the reachability problem forPetri nets. Theoretical Computer Science, 3(1):85{104, 1977.[BBK87] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimulation equivalence forprocesses generating context-free languages. In Proc. Parallel Architectures and LanguagesEurope (PARLE'87), Eindhoven, NL, June 1987, vol. II: Parallel Languages, volume 259 ofLecture Notes in Computer Science, pages 94{111. Springer-Verlag, 1987.[BCG88] M. C. Browne, E. M. Clarke, and O. Gr�umberg. Characterizing �nite Kripke structures inpropositional temporal logic. Theoretical Computer Science, 59(1{2):115{131, 1988.[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic modelchecking: 1020 states and beyond. Information and Computation, 98(2):142{170, 1992.[Boc78] G. von Bochmann. Finite state description of communication protocols. Computer Networksand ISDN Systems, 2:361{372, 1978.[BZ83] D. Brand and P. Za�ropulo. On communicating �nite-state machines. Journal of the ACM,30(2):323{342, 1983.[C�ec93] G. C�ec�e. Etat de l'art des techniques d'analyse des automates �nis communicants. Rapportde DEA, Universit�e de Paris-Sud, Orsay, France, September 1993.[�Cer94] K. �Cer�ans. Deciding properties of integral relational automata. In Proc. 21st Int. Coll.Automata, Languages, and Programming (ICALP'94), Jerusalem, Israel, July 1994, volume820 of Lecture Notes in Computer Science, pages 35{46. Springer-Verlag, 1994.[CF97] G. C�ec�e and A. Finkel. Programs with quasi-stable channels are e�ectively recognizable. InProc. 9th Int. Conf. Computer Aided Veri�cation (CAV'97), Haifa, Israel, June 1997, volume1254 of Lecture Notes in Computer Science, pages 304{315. Springer-Verlag, 1997.[CFP95] G. C�ec�e, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify thanperfect channels. Information and Computation, 124(1):20{31, 1995.27

[CHM94] S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS. The Computer Journal,37(4):233{242, 1994.[Cia94] G. Ciardo. Petri nets with marking-dependent arc cardinality: Properties and analysis. InProc. 15th Int. Conf. Applications and Theory of Petri Nets, Zaragoza, Spain, June 1994,volume 815 of Lecture Notes in Computer Science, pages 179{198. Springer-Verlag, 1994.[Cou90] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, vol. B, chapter 5, pages 193{242. Elsevier SciencePublishers, 1990.[DFS98] C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecid-ability, January 1998. To appear in Proc. ICALP'98, Aalborg, DK.[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with r distinctprime factors. Amer. Journal Math., 35:413{422, 1913.[Esp97] J. Esparza. More in�nite results. In Proc. 1st Int. Workshop on Veri�cation of In�nite StateSystems (INFINITY'96), Pisa, Italy, Aug. 1996, volume 5 of Electronic Notes in Theor.Comp. Sci. Elsevier, 1997.[FC87] A. Finkel and A. Choquet. Fifo nets without order deadlock. Acta Informatica, 25(1):15{36,1987.[Fin82] A. Finkel. About monogeneous �fo Petri nets. In Proc. 3rd European Workshop on Applica-tions and Theory of Petri Nets, Varenna, Italy, Sep. 1982, pages 175{192, 1982.[Fin86] A. Finkel. Structuration des Syst�emes de Transitions. Applications au Contrôle du Paral-lelisme par Files FIFO. Th�ese de Docteur d'Etat, Universit�e de Paris-Sud, Orsay, France,June 1986.[Fin87a] A. Finkel. A generalization of the procedure of Karp and Miller to well structured transitionsystems. In Proc. 14th Int. Coll. Automata, Languages, and Programming (ICALP'87), Karl-sruhe, FRG, July 1987, volume 267 of Lecture Notes in Computer Science, pages 499{508.Springer-Verlag, 1987.[Fin87b] A. Finkel. Well structured transition systems. Research Report 365, Lab. de Recherche enInformatique (LRI), Univ. Paris-Sud, Orsay, August 1987.[Fin88] A. Finkel. A new class of analyzable CFSMs with unbounded FIFO channels. In Prelim.Proc. 8th IFIP WG 6.1 Int. Symp. Protocol Speci�cation, Testing and Veri�cation, AtlanticCity, New Jersey, USA, June 1988, 1988.[Fin90] A. Finkel. Reduction and covering of in�nite reachability trees. Information and Computation,89(2):144{179, 1990.[Fin94] A. Finkel. Decidability of the termination problem for completely speci�cied protocols. Dis-tributed Computing, 7:129{135, 1994.[GR85] M. G. Gouda and L. E. Rosier. Synchronizable networks of communicating �nite state ma-chines. Unpublished manuscript, 1985.[GW89] R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in process algebra.In G. X. Ritter, editor, Information Processing 89, pages 613{618. North-Holland, August1989.[Hen95] T. A. Henzinger. Hybrid automata with �nite bisimulations. In Proc. 22nd Int. Coll. Au-tomata, Languages, and Programming (ICALP'95), Szeged, Hungary, July 1995, volume 944of Lecture Notes in Computer Science, pages 324{335. Springer-Verlag, 1995.28

[Hig52] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),2(7):326{336, 1952.[JP93] B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-�nite-stateprograms. Information and Computation, 107(2):272{302, 1993.[KM69] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and SystemSciences, 3(2):147{195, 1969.[Kru72] J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. J. Com-binatorial Theory, Series A, 13(3):297{305, 1972.[KS97a] O. Kouchnarenko and Ph. Schnoebelen. A model for recursive-parallel programs. In Proc.1st Int. Workshop on Veri�cation of In�nite State Systems (INFINITY'96), Pisa, Italy, Aug.1996, volume 5 of Electronic Notes in Theor. Comp. Sci. Elsevier, 1997.[KS97b] O. Kushnarenko and Ph. Schnoebelen. A formal framework for the analysis of recursive-parallel programs. In Proc. 4th Int. Conf. Parallel Computing Technologies (PaCT'97),Yaroslavl, Russia, Sep. 1997, volume 1277 of Lecture Notes in Computer Science, pages45{59. Springer-Verlag, 1997.[M�ak85] E. M�akinen. On permutative grammars generating context-free languages. BIT, 25:604{610,1985.[MF85] G. Memmi and A. Finkel. An introduction to FIFO nets{monogeneous nets: A subclass ofFIFO nets. Theoretical Computer Science, 35(2{3):191{214, 1985.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.[Mol96] F. Moller. In�nite results. In Proc. 7th Int. Conf. Concurrency Theory (CONCUR'96),Pisa, Italy, Aug. 1996, volume 1119 of Lecture Notes in Computer Science, pages 195{216.Springer-Verlag, 1996.[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall Int., 1981.[Rei85] W. Reisig. Petri Nets. An Introduction, volume 4 of EATCS Monographs on TheoreticalComputer Science. Springer-Verlag, 1985.[Val78] R. Valk. Self-modifying nets, a natural extension of Petri nets. In Proc. 5th Int. Coll.Automata, Languages, and Programming (ICALP'78), Udine, Italy, Jul. 1978, volume 62 ofLecture Notes in Computer Science, pages 464{476. Springer-Verlag, 1978.
29

