A. Finkel and Ph. Schnoebelen

Well-Structured Transition Systems
Everywhere !

Research Report LSV-98-4, Apr. 1998

écification
e
arification

Ecole Normale Supérieure de Cachan
61, avenue du Président W ilson

gg.'gﬁiﬁ.%"ui“""'i 94235 Cachan Cedex France

http://lwww.Isv.ens—cachan.fr/Publis/

Research Report LSV-98-4, Lab. Spécification et Vérification, CNRS & ENS de Cachan, France, Apr. 1998
An updated version will appear ineoretical Computer Science. See WWW publications pages of the authors.

Well-Structured Transition Systems Everywhere !

A. Finkel and Ph. Schnoebelen
Lab. Specification and Verification
ENS de Cachan & CNRS URA 2236
61, av. Pdt Wilson; 94235 Cachan Cedex; FRANCE
email: {finkel phs}@Ilsv.ens-cachan.fr

April 7, 1998

Abstract

Well-structured transition systems (WSTS’s) are a general class of infinite state systems
for which decidability results rely on the existence of a well-quasi-ordering between states
that is compatible with the transitions.

In this article, we provide an extensive treatment of the WSTS idea and show several
new results. Our improved definitions allow many examples of classical systems to be seen
as instances of WSTS’s.

1 Introduction

Verification of infinite-state systems. Formal verification of programs and systems is a
very active field for both theoretical research and practical developments, especially since im-
pressive advances in formal verification technology proved feasible in several realistic appli-
cations from the industrial world. The highly successful model-checking approach for finite
systems [BCM™92] suggested that a working verification technology could well be developed for
systems with an infinite state space.

This explains the considerable amount of work that has been devoted in recent years to this
“verification of infinite state systems” field, with a surprising wealth of positive results [Mol96,
Esp97]. The field now has its own conference.

Well-structured transition systems. A very interesting development in this field is the
introduction of well-structured transition systems (WSTS’s). These are transition systems where
the existence of a well-quasi-ordering over the infinite set of states ensures the termination of
several algorithmic methods. WSTS’s are an abstract generalization of several specific structures
and they allow general decidability results that can be applied to Petri nets, lossy channel
systems, and many more. (Of course, WSTS’s are not intended as a general explanation of all
the decidability results one can find for specific models.)

Finkel [Fin87a, Fin87b, Fin90] was the first to propose a definition of WSTS (actually several
variant definitions). His insights came from the study of Petri nets where several decidability
results rely on a monotonicity property (transitions firable from marking M are firable from any
larger marking) and Dickson’s lemma (inclusion between markings of a net is a well-ordering). He

mainly investigated the decidability of termination, boundedness and coverability-set problems.
He applied the idea to several classes of fifo nets and of CEFSM’s (see Section 9).
Independently, Abdulla et al. [ACIY96] later proposed another definition. Their insights
came from their study of lossy-channel systems and other families of analyzable infinite-state
systems (e.g. integral relational automata [Cer94]). They mainly investigated covering, in-
evitability and simulation problems. They applied the idea to timed networks [AJ97] and lossy

systems.
Later, Kushnarenko and Schnoebelen [KS97a] introduced WSTS’s with downward compati-
bility, motivated by some analysis problems raised by Recursive-Parallel Programs.

Some criticisms. Though the two earlier lines of work had a great unifying power, they still

suffered from some defects (these defects are also present in [KS97a]).

Our

Both Finkel and Abdulla et al. proposed definitions aiming at a specific algorithm or two,
hence their WSTS concept is burdened with unnecessary structure. Finkel was interested
in coverability-sets, so that his definition included e.g. complex continuity requirements.
Abdulla et al. were interested in simulation with a finite state system, so that their
definition included e.g. labels on transitions.

More generally, both definitions are conservative for no good reason we can think of. As a
consequence, both proposals end up surprisingly short of simple examples of their “general”
concept.

Both definitions mix up structural and effectivenessissues while in reality the effectiveness
requirements are quite variable, depending on which algorithm one is talking about. As a
result their definition becomes more complex and restrictive when more decision methods

for WSTS’s are found.

Several proofs in these earlier papers are quite messy or tedious. In part this is due to
the unnecessarily complex definitions and to a lack of classifying work. As a consequence
some potentially enlightening connections are hard to notice.

These early works do not tackle the fundamental question of “how / when can one turn
a given (family of) transition system into WSTS 77, i.e. how can one find a compatible
well-ordering 7

contribution. This article is both a survey of earlier works on the WSTS idea, and a

presentation of our proposal for a new conceptual framework, together with several new results

or new extensions of earlier results.
More precisely,

We propose and investigate a cleaner, more general definition of WSTS, generalizing the
early insights of Finkel, Abdulla et al., Kushnarenko and Schnoebelen.

We separate structural and effectiveness issues and only add effectiveness hypothesis when
and where they are needed for a decision method.

We classify the decision methods into two main families: set-saturation and tree-saturation
methods.

o We give five main decidability results. Except for Theorem 5.5, they never appeared in
such a general framework. Both Theorem 3.6, made possible by our Definition 3.2, and
Theorem 4.8, made possible by the key notion of stuttering compatibility, have much more
applications than their ancestors.

e We give a quite large collection (summarized in Fig. 9, page 26) of system models that can
be fitted into the WSTS framework. These examples come from various fields of computer
science. Many have not been noticed earlier. Several of them use original and innovative
well-orderings. Roughly half of them are WSTS’s only in our new, generalized, definition.

e Finally, we ask how and when a given transition system can be given a well-structure.
We offer surprisingly general answers (e.g. our Ubiquity Theorem) for the more liberal
definition.

Outline of the article. This article is divided into three parts. In Part I we introduce the
fundamentals concepts underlying WSTS’s (section 2) and we describe the two main families of
decision methods for WSTS’s: set-saturation methods (section 3) and tree-saturation methods
(section 4). We conclude this part with downward-WSTS’s (section 5).

Part II is devoted to examples of WSTS’s. We successively visit Petri nets and their exten-
sions (section 6), string rewrite systems (section 7), process algebra (section 8), communicating
automata (section 9) and a few less classical operational models of computation (section 10).
All these (families of) models are found to be well-structured in natural ways. This is a strong
point in favor of our claim that we propose a more interesting definition of WSTS’s.

Finally, Part 11 is concerned with the passage from TS’s to WSTS’s. We investigate when and
how does there exist well-quasi-orderings that can provide a well-structure to a given transition
system.

Part 1
Fundamentals of WSTS’s

Part I presents the technical core of the WSTS idea. As a rule, examples and illustrations have
been postponed until Part II.

2 Basic notions

2.1 Well-quasi-orderings

Recall that a quasi-ordering (a go) is any reflexive and transitive relation <. We let 2 < y
denote # <y £ z. A partial ordering (a po, an “ordering”, ...) is an antisymmetric qo. Any
qo induces an equivalence relation (z = y iff # < y < z) and gives rise to a po between the
equivalence classes.

We now need a few results from the theory of well-orderings (see also e.g. [Kru72, High2]).

Definition 2.1. A well-quasi-ordering (a wqo) is any quasi-ordering < (over some set X) such
that, for any infinite sequence xg, x1, %2, ... in X, there exists indexes 1 < j with x; < x;.

Hence a wqo is well-founded, i.e. it admits no infinite strictly decreasing sequence zq > 21 >
xz > “ ..

Lemma 2.2. (Erdos & Rado) Assume < is a wgo. Then any infinite sequence contains an
infinite increasing subsequence: x;, < x; < iy ... (with g < i3 <ig...).

Proof. Consider an infinite sequence and the set M = {i € N | Vj > i,2; £ 2;}. M cannot
be infinite, otherwise it would lead to an infinite subsequence contradicting the wqo hypothesis.
Thus M is bounded and any z; with ¢ beyond M can start an infinite increasing subsequence. [

Given < a quasi-ordering, an upward-closed set is any set I C X such that y > z € I entails
y € I. To any z € X we associate 1o & {y | y > «}. It is upward-closed. A basis of an
upward-closed I is a set I® such that I = U,epp To. Higman investigated ordered sets with the
finite basis property.

Lemma 2.3. [Hig52] If < is a wqo, then any upward-closed I has a finite basis.

Proof. The set of minimal elements of I is a basis because < is well-founded. It only contains
a finite number of non-equivalent elements otherwise they would make an infinite sequence
contradicting the wqo assumption. O

Lemma 2.4. If < is a wgo, any infinite increasing sequence Io C I1 C Iy C - -+ of upward-closed
sets eventually stabilizes, i.e. there is a k € N such that I, = Ixy1 = Ip4o = ...

Proof. Assume we have a counter-example. We extract an infinite subsequence where inclusion
is strict: I,, G I,,, G I, & ---. Now, for any ¢ > 0, we can pick some z; € I, \ I,,_,. The
well-quasi-ordering hypothesis means that the infinite sequence of z;’s contains an increasing
pair z; < z; for some ¢ < j. Because z; belongs to an upward-closed set I,,, we have z; € I,
contradicting x; € I, _,. O

2.2 Transition systems

A transition system (TS) is a structure § = (S, —,...) where S = {s,t,...} is a set of states,
and —C § x S is any set of transitions. TS’s may have additional structure like initial states,
labels for transitions, durations, causal independence relations, etc., but in this paper we are
only interested in the state-part of the behaviors.

We write Succ(s) (resp. Pred(s)) for the set {s' € S| s — s’} of immediate successors of
s (resp. {s' € S | s — s} the predecessors). A state with no successor is a terminal state. A
computation is a maximal sequence sg — s1 — S9 - - - of transitions.

We write — (resp. i>7 =, i>) for the n-step iteration of the transition relation — (resp. for

its transitive closure, for its reflexive closure, for its reflexive and transitive closure). Hence N
is —. We use similar notation for Succ and Pred, so that for o € {4+,=,%,0,1,2,...}, Succ®(s)
is {s'] s> s},

S is finitely branching if all Succ(s) are finite. We restrict our attention to finitely branching
TS’s.

2.3 Well-structured transition systems

Definition 2.5. A well-structured transition system (WSTS) is a TS S = (S, —, <) equipped
with a go <C S X S between states such that the two following conditions hold:

(1) well-quasi-ordering: < is a wqgo, and

(2) compatibility: < is (upward) compatible with —, i.e. for all s; < t; and transition s; —
S9, there exists a sequence tq 2ty such that sy < to.

Thus compatibility states that < is a weak simulation relation & la R. Milner.
See Figure 1 for a diagrammatic presentation of compatibility where we quantify universally
over solid lines and existentially over dashed lines. Several families of formal models of processes

<
v SI/\t‘l
I
%

<

|
|
s T~ ¥2 3
Figure 1: (Upward) compatibility

give rise to WSTS’s in a natural way, e.g. Petri nets when inclusion between markings is used
as the well-ordering. In Part II, we shall see many more examples.

3 Set-saturation methods

We speak of set-saturation methods when we have methods whose termination relies on Lemma 2.4.
In this section, we illustrate the idea with backward reachability analysis, generalizing a result
from [ACJY96].

Other examples of the set-saturation family are the algorithm for simulation by a finite state
system (from [ACJY96]), and the algorithm for the sub-covering problem (from [KS97a]).

Assume § = (5,—,<) is a WSTS and I C S is a set of states. Backward reachability
analysis involves computing Pred*([) as the limit of the sequence Iy C I; C ... where I e

and 11 ES I,UPred(l,). The problem with such a general approach is that termination is not

guaranteed. For WSTS’s, this can be solved when [is upward-closed:

Proposition 3.1. If I C S is an upward-closed set of states, then Pred*(I) is upward-closed.

Proof. Assume s € Pred*(I). Then s = t for some ¢ € I. If now s > s then upward-
compatibility entails that s' = ¢’ for some ¢/ > t. Then ¢’ € T and s’ € Pred*(I). O

Pred*(I) can be computed if we make a few decidability assumptions:

Definition 3.2. A WSTS has effective pred-basis if there ewists an algorithm accepting any
state s € S and returning pb(s), a finite basis of 1 Pred(1s).

Note that Definition 3.2 is distinct from the requirement for a basis of Pred(1 s) used
in [ACJY96]. Our definition is necessary for the generalized Theorem 3.6 we aims at.

Now assume that S is a WSTS with effective pred-basis. Pick I’ a finite basis of I and define
a sequence Ko, K1q,... of sets with Ky ES I, and K41 ES K, Upb(K,). Let m be the first index
such that 1K, =1 K,,+1. Such an m must exist by Lemma 2.4.

Lemma 3.3. 1K, =1{J;cn K.
Proof. This is not a consequence of Lemma 2.4 but rather of

1Y =1Y" implies 1pb(Y) =1 pb(Y").
which relies on the definition of pb and the distributivity property of Pred and {w.r.t. union. O
Lemma 3.4. T|JK; = Pred*(I).
Proof. Use induction over n and show that

K, C1K, C Pred*(I) (=1 Pred*(I))
On the other hand, the definition of pb entails 1 Pred”(I) C 1K, so that

Pred*(I) C | 1K €1 Ki C1Pred (D).
1EN 1EN
O

Proposition 3.5. If S is a WSTS with (1) effective pred-basis and (2) decidable <, then it is
possible to compute a finite basis of Pred*(I) for any upward-closed I given via a finite basis.

Proof. The sequence Kg, K1,... can be constructed effectively (each K, is finite and pb is
effective). The index m can be computed because the computability of < entails the decidability
of “t K =1 K’ 77 for finite sets K and K’. Finally, K,, is a computable finite basis of
Pred*(I). O

The covering problem is to decide, given two states s and ¢, whether starting from s it is possible
to cover ¢, i.e. to reach a state t' > .

The covering problem is often called the “control-state reachability problem” when .S has the
form @ x D (for Q) a finite set of so-called “control states”) and (q,d) < (¢’,d’) entails ¢ = ¢'.

Theorem 3.6. The covering problem is decidable for WSTS’s with (1) effective pred-basis and
(2) decidable <.

Proof. Thanks to Proposition 3.5, one can compute K, a finite basis of Pred*(1t). It is possible
to cover t starting from s iflf s € T K. By decidability of <, it is possible to check whether
setK. O

Variants of this problem can be decided in the same way. E.g. deciding whether ¢ can be covered
from all states in a given upward-closed /. Or from all states in a downward-closed D = S\ (this
requires WSTS’s with intersection-effectiveness, i.e. there is an algorithm computing inter (s, s’),
a finite basis of TsN1s).

4 Tree-saturation methods

We speak of tree-saturation methods when we have methods representing (in some way) all
possible computations inside a finite tree-like structure. In this section, we illustrate the idea
with the Finite Reachability Tree and its several applications to termination, inevitability, and
boundedness problems.

Other examples of the tree-saturation idea is the algorithm for simulation of a finite state
systems (from [ACJY96]), and the algorithm for coverability-sets (from [Fin87al).

We assume & = (9, —, <) is a WSTS.

4.1 Finite reachability tree

Definition 4.1. [Fin90] For any s € S, FRT(s), the Finite Reachability Tree from s, is a
directed unordered tree where nodes are labeled by states of S. Nodes are either dead or live.
The root node is a live node ng, labeled by s (written ng : s). A dead node has no child node. A
live node n : t has one children n' 1 t' for each successor t' € Suce(t). If along the path from the
root ng : s to some node n' : t' there exists a node n :t (n #n') such that t <t', we say that n
subsumes n’, and then n' is a dead node. Otherwise, n' is live.

Thus leaf nodes in F'RT(s) are exactly (1) the nodes labeled with terminal states, and (2)
the subsumed nodes. See Part 11 for examples.

Lemma 4.2. FRT(s) is finite (hence the name).

Proof. The wqo property ensures that all paths in F'RT'(s) are finite because an infinite path
would have to contain a subsumed node. Finite branching and Koénig’s lemma conclude the
proof. O

With finiteness, we observe that F'RT(s) is effectively computable if S has (1) a decidable <,
and (2) effective Succ (i.e. the Suce mapping is computable).

The construction of FRT(s) does not require compatibility between < and —. However,
when we have compatibility, F'/RT'(s) contains, in a finite form, sufficient information to answer
several questions about computations paths starting from s. For a start, we have

Lemma 4.3. Any computation starting from s has a finite prefiz labeling a maximal path in

FRT(s).
Proof. Obvious. O

Further results need slightly restricted notions of compatibility: transitive compatibility and
stuttering compatibility.

4.2 Transitive and stuttering compatibility

Definition 4.4. A WSTS S has strong compatibility if for all sy <ty and transition sy — s9,
there exists a transition t;1 — ty with sy < tq.

S has transitive compatibility if for all sy < t1 and transition s; — s, there exists a non-
empty sequence t; — tg — -« — t, with s; <t,.

S has stuttering compatibility if for all sy <ty and transition s; — sy, there exists a non-
empty sequence t; — tg — -+ — t, with so <t, and sy <t; for all v < n.

S has reflexive compatibility if for all s1 <ty and transition s — sq, either so <ty or there
exists a transition t1 — to with sy < ty.

See Figure 2 for a diagrammatic presentation of these refinements of compatibility.

< < <
Vo os 1 V. os 1 v 91(\@1 Vo 1
3 L+ J(RN =
< < <l <
j/—\\yg 3 j/—\\yg 3 (2,"‘\\77 3 ‘j/—\\yg 3

(a) strong (b) transitive (c) stuttering (d) reflexive

Figure 2: Transitive and stuttering compatibility

Strong compatibility (also called “1-1 compatibility”) is inspired from classical strong simu-
lation and the other forms of compatibility we use are more general than this.

Reflexive compatibility is strong compatibility for =.

Transitive compatibility is slightly less general than the “reflexive-and-transitive” compat-
ibility we used in Def. 2.5. Finkel’s notion of “3-structured systems” [Fin90] uses transitive
compatibility in a framework where labels of transitions are taken into account.

Stuttering compatibility, introduced in [KS97al, is less general than transitive compatibility.
The name comes from “stuttering” [BCG88] (also “branching” [GW89]) bisimulation. Both are
more general than strong compatibility.

In practice, the strong, “1-1”7, notion used by Abdulla et al. is much more limited than
appears at first sight. Clearly, their motivation was the decidability of simulation with a finite-
state system. Unfortunately most examples do not have strong compatibility, so that for e.g.
Lossy Channel Systems they have to modify the semantics of the model.

More generally, when § = (S, —,<) is a WSTS, then &* s (§,5,<) has strong, “1-17,
compatibility, but it is not necessarily a WSTS. §* is in general not finitely branching. Worse,
when effectiveness issues are taken into account, §* needs not have effective Succ or pred-basis

even when & has. Finally, the inevitability properties investigated in [ACJY96] do not translate
from = (or i>) to —.

4.3 Termination

Assume § is a WSTS with transitive compatibility.

Proposition 4.5. S has a non-terminating computation starting from s iff FRT(s) contains a
subsumed node.

Proof. (=): Consider a non-terminating computation. A finite prefix labels a path in F'RT(s)
(Lemma 4.3). The last node of this path is a leaf node, not labeled with a terminal state, hence

a subsumed node.

(<): If ny : ty is the leaf node subsumed by n; : t;, we have s = t; Xty with £ < .

Transitive compatibility allows to infer the existence of some ¢ & ts with ty < t3. Repeating
this reasoning, we build an infinite computation starting from s. O

Hence we have

Theorem 4.6. Termination is decidable for WSTS’s with (1) transitive compatibility, (2) de-
cidable <, and (3) effective Succ.

4.4 Eventuality properties

Assume S is a WSTS with stuttering compatibility.

Proposition 4.7. [KS97a] Assume I is upward-closed. There exists a computation starting
from s where all states are in I iff FRT(s) has a mazimal path where all nodes are labeled with
states in I.

Proof. (=): Use Lemma 4.3.

(«<): Assume that ng : tg,...,ng : t is a maximal path in F'RT(s) with all labels in I. If ny is
a live node, then tg — t; — -+ {3 is a computation and we are done. If n; is a dead node, then
we display an infinite computation (s =) sg — s; — --- where all states are greater (w.r.t. <)

than one of the ¢;’s, and thus belong to I.
We define the s;’s inductively, starting from sqg L (= to). Assume we have already built
S0,...,5,. We have s, > t; for some 1 < k. There are two cases:

e ¢ < k: then ¢; — t;41. Because of stuttering compatibility, there exists a sequence s,, —
s = Sy (mo> m) with s, ..., Smo1 > t; and s, > t;1;. We use them to lengthen our
sequence up to s,,.

e ;= k: then, because ny is dead, t; <t for some j < k. Thus t; < s,, so that we are back
to the previus case and can lengthen our sequence.

O

Now we can generalize a Theorem from [ACJY96].

The control-state maintainability problem is to decide, given an initial state s and a finite
set @ = {t1,...,t,} of states, whether there exists a computation starting from s where all
states cover one of the ¢;’s. The dual problem, called the inevitability problem, is to decide
whether all computations starting from s eventually visit a state not covering one of the ¢;’s.
Concrete examples abound. See Part II. E.g. for Petri nets, we can ask whether a given place
will inevitably be emptied.

Theorem 4.8. The control-state maintainability problem and the inevitability problem are de-
cidable for WSTS’s with (1) stuttering compatibility,(2) decidable <, and (3) effective Succ.

Proof. Thanks to Proposition 4.7, the control-state maintainability problem reduces to checking
whether FFRT'(s) has a maximal path with all labels in 1Q. O

4.5 Strict compatibility

Finkel [Fin90] also considered WSTS’s with strict compatibility. Strict compatibility is a stronger
form of compatibility.

Definition 4.9. A WSTS S has strict compatibility if for all sy < t1 and transition sy — s9,
there exists a sequence tq 5ty with sy < ty.

Note that strict compatibility already requires normal non-strict compatibility by assuming
that § is a WSTS. When < is a partial ordering, strict compatibility alone entails non-strict
compatibility. We adopted the more general definition for situations where < is a quasi-ordering.

Strict compatibility means that from strictly larger states it is possible to reach strictly larger
states. See Figure 3 for a diagrammatic presentation. Of course the concept can be combined

< <
V s > Z‘L] v s> l‘Ll
3* and 3*

<

Sy ‘\yg = Sg7 \‘y2 =
Figure 3: Strict compatibility

HA

with transitive, stuttering, ... compatibility.

When we have strict compatibility, the Finite Reachability Tree contains information per-
taining to the finiteness of the number of reachable states. Assume that § = (5, —,<) is a
WSTS with strict transitive compatibility. Further, assume that < is a partial ordering (not a
quasi-ordering).

Proposition 4.10. For any s € S, Succ*(s) is infinite iff FRT(s) contains a leaf node n : ¢
subsumed by an ancestor n' : t' with t' < t.

Proof. («<:) If n : t is subsumed by n’ : ¢’ then S admits an infinite computation s = #o AN
ty... with t; < t;4q foralli =20,1,2,.... This computation is easily built inductively by picking
to =t and ¢; = t’. Then, strict transitive compatibility allows us to deduce, from ¢;_; & t; and
t;_1 < t; the existence of a t; i tit1 with t; < ¢;41. Then the ¢;’s are all distinct and Succ*(s)
is infinite.

(=:) Assume Succ*(s) is infinite. We first show that there exists a computation starting from
s without any loop, i.e. where all states are distinct. For this, we cannot simply remove loops
from an infinite computation as this may well result into a finite prefix only. So we rather
consider the (finitely branching) tree of all prefixes of computations. Now prune this tree by
removing all prefixes with a loop. Because any reachable state can be reached without a loop,
the pruned tree still contains an infinite number of prefixes. Now Ko&nig’s lemma gives us an
infinite computation with no loop.

We now apply Lemma 4.3 to this computation: this provides a node n : ¢ subsumed by n’ : ¢/
with ¢ # t'. Hence ¢’ < t because < is a partial ordering. O

Now we can generalize a Theorem from [Fin90].
The boundedness problem is to decide, given a T'S § and some state s € S, whether Succ™(s),
the “set of reachable states”, is finite.

10

Theorem 4.11. The boundedness problem is decidable for WSTS’s with (1) strict transitive
compatibility, (2) a decidable < which is a partial ordering, and (3) computable Succ.

Proof. We can apply Prop. 4.10 so that it is enough to build FFRT'(s) and inspect it for a
subsumed node with strict subsumption. This can be done when Swucc and < are effective. [

5 Downward-WSTS’s

There also exists a notion of downward-WSTS, first introduced in [KS97a] for the RPPS model.
We generalize it to

Definition 5.1. A downward-WSTS is a TS § = (9, —, <) equipped with a qo <C S x S
between states such that the two following conditions hold:

(1) well-quasi-ordering: < is a wqgo, and

(2) downward-compatibility: < is downward-compatible with —, i.e. for all sy > t; and
transition s1 — s, there exists a sequence ty 5ty such that sy > ts.

See Figure 4 for a diagrammatic presentation of downward-compatibility. Downward-WSTS’s

2
v SI/\t‘l
I
%

2

|
|
r T ¥2 =
Figure 4: Downward compatibility

have been less investigated, partly because only a few recent models give rise naturally to WSTS’s
with downward-compatibility. In Part II, we shall see several examples.

Assume § = (S, —, <) is a downward-WSTS with reflexive compatibility and K, K’ are two
sets of states.

Lemma 5.2. 1K CtK' implies 1 Succ=(K) C T Succ=(K').

Proof. (Recall that Suce™(K) is K U Suce(K).) Assume s € 1 Succ™(K). Then there exist
s1 € K and t; with s; = ¢; < s. Because 1K C 1K', there is a s, € K’ with sy < s;. Because
S is a downward-WSTS with reflexive compatibility, there exists a sy — to with to < t;. Hence
ty <'s. Now ty € Succ=(K') entails s € T Suce=(K'). O
Now assume s € S and define a sequence Ky, Kq,... of sets with Kj e {s}, and K11 e
K, USucc(K,). Let m be the first index such that 1 K,, =1 K,,4+1. Such an m must exist by
Lemma 2.4.

Lemma 5.3. 1K, =1T;cy Ki = T Succ™(s).

Proof. The first equality is a direct consequence of Lemma 5.2, the second follows from the
definition of the K;’s. O

11

Proposition 5.4. IfS is a downward-WSTS with (1) reflexive compatibility, (2) effective Succ,
and (3) decidable <, then it is possible to compute a finite basis of TSucc™(s) for any s € S.

Proof. We proceed as with Prop. 3.5, The sequence Ky, K1,... can be constructed effectively
(each K; is finite and Succ is effective). The index m can be computed by computability of <.
Finally, K,, is a computable finite basis of 1Succ*(s). O

The sub-covering problem is to decide, given two states s and ¢, whether starting from s it is
possible to be covered by ¢, i.e. to reach a state ¢’ <.

Theorem 5.5. The sub-covering problem is decidable for downward-WSTS’s with (1) reflexive
compatibility, (2) effective Succ and (3) decidable <.

Proof. Thanks to Proposition 5.4, one can compute K, a finite basis of TSucc*(s). It is possible
to be covered by ¢ starting from s iff t €1 K. By decidability of <, it is possible to check whether
tetK. O

Part 11
The ubiquity of WSTS’s

In this second part we review several fundamental computational models and discover instances
of WSTS’s in these frameworks.

In general, all the well-structured systems we mention enjoy the effectiveness requirements
assumed e.g. by Theorems 3.6, 4.6, 4.8 and 5.5. We will not state this explicitly every time. In
fact, we mainly state the few exceptions, all of them occurring when we use a non-trivial < for
which decidability is lost.

6 The well-structure of Petri nets

Petri nets are a well-known model of concurrent systems. See [Pet81, Rei85] for a general
presentation.

Formally a net N = (Py,Tn, Fy) has a finite set Py of places, a finite set T of transitions
(with Py N Ty = 0) and a flow matrix Fy : (Pyv X Ty UTy X Py) — N. Figure 5 contains
an example net. The configurations of a net N are markings, which can be seen as Py-indexed

P @‘ | t,

Figure 5: A Petri net

12

vectors of non-negative integers, or as multisets of places. The marking My depicted in Figure 5
is denoted {p1,p1, 2, p3} or pipaps.

The simplest ordering between markings is inclusion: M C M’ when M (p) < M'(p) for every
place. That it is a wqo is known as Dickson’s lemma [Dic13].

Petri nets with inhibitory arcs extend the basic model with special “inhibitory” arcs (also
called “zero-test” arcs) that forbid (inhibit) the firing of a given transition when a given place
is not empty.

Petri nets with transfer arcs [Cia94] extend the basic model with special “transfer” arcs. Here
transitions fire as usual but their effect is richer: the transfer arcs say whether the full content
of some place must be transfered (added) to some other place.

Petri nets with reset arcs [Cia94] extend the basic model with special “reset arcs” telling how
the firing of some transitions resets (empties) some places.

Self-modifying nets [Val78] are Petri nets where the weight on arcs is not a constant anymore.
Rather it is an expression evaluating into a linear combination (with non-negative coefficients)
of the current contents of the places. Post self-modifying nets are self-modifying nets where the
self-modifying extension is only allowed on “post” arcs (arcs from transitions to places).

In all these extensions, reachability becomes undecidable [AK77, Val78]. However

Theorem 6.1. Using the inclusion ordering,

1. Petri nets are WS'TS’s with strong strict compatibility,

2. Petri nets with transfer arcs are WS'TS’s with strong strict compatibility,
3. Petri nets with reset arcs are WS'TS’s with strong compatibility,

4. post self-modifying nets are WSTS s with strong strict compatibility.

Proof. Obvious. O

So that e.g. covering is decidable for them ! Covering is a classical problem in the Petri net field.
It was known to be decidable since [KM69]. As noted in [ACIJY96], a byproduct of Theorem 3.6
is a backward-based algorithm for the covering problem in Petri nets. This also applies to the
three extensions (transfer arcs, reset arcs, post self-modifying nets) we mentioned.

As far as we know, all implemented algorithms for this problem use Karp and Miller’s cover-
ability tree, or the coverability graph, or some such quite complex forward-based method. These
methods cannot be generalized to all extensions (e.g. it fails for reset arcs [DFS98]).

Other orderings can turn Petri nets into WSTS’s. Assume N = (P, T, F, Mp) is a marked net
(a net with a given initial marking Mp). Say a place p € P is unbounded if there are reachable
(from Mp) markings with an arbitrarily large number of tokens in p. Separate bounded and
unbounded places and write P = P, U P,;. Usually, one sees places in P, as “control places”
and places in P,; as “data places” or “counter places”.

Now define the ordering

M'(p) forall p € P,

/ def =
M< M < { M(p) < M'(p) for all p € Py.

13

This is a well-ordering over the set of reachable markings. So that, if we associate to a marked
net (N, Mp) a transition system Sy s, containing only the reachable markings we get

Proposition 6.2. (Sy ., <) is a WSTS.

This works for all the extensions like post self-modifying nets, etc. we mentioned earlier.
However, the well-ordering is only decidable when we can tell effectively which places of the
net are bounded. This can be done for Petri nets and for post self-modifying nets. (For nets
with reset arcs and nets with transfer arcs, telling whether a given place p is bounded is not

decidable [DFS98]).

The partial bounded reachability problem is, given a marked net N, My and a marking M, to
tell whether from Mp it is possible to reach an M’ with M’ (p) = M(p) for all p € P.

Theorem 6.3. The partial bounded reachability problem is decidable for Petri nets and post
self-modifying nets.

Proof. The partial bounded reachability problem is an instance of the covering problem for
(SN.My5 <) 0

The most surprising aspect of this result is the relative simplicity of the algorithmic notions that
are involved.

Inhibitory arcs can be handled if we have no synchronization. BPP nets, short for Basic
Parallel Processes, are nets where the pre-set of transitions is reduced to a single place [CHM94,

Mol96].

Theorem 6.4. With the inclusion ordering, BPP’s with inhibitory arcs are downward-WSTSs
with reflexive compatibility.

Proof. Assume My D M| and M, N M. If t is firable in M{ then M] N M} and My DO M. 1If
t is not firable in M{ then this cannot be caused by an inhibitory arc because M; O M;. Hence
M does not contain pre(t). But pre(t) is some place p, so that My — {p} O M]. Now M, is
My — {p} + post(t) and My O Mj. O

7 The well-structure of string rewrite systems

A Context-Free Grammar (CFG) is a tuple G = (Ng,Tq, Rg) where Ng (the non-terminal
symbols) and T (the terminal symbols) are disjoint alphabets and where, writing ¥ for Ng U
Tg, Re € Ng x X¢ is a finite set of production rules of the form X — w. See [ABB97] for
details.

Here is an example where we group right-hand sides related to a common left-hand side

symbol.
S = XY | aSS

G: X — bY |«
Y —- XX

The rules in R¢ induce a notion of rewrite step: if X — w is in Rg then uXv — ¢ wwv for any
1, v. Usually, we are interested in derivation sequences that start from a given, so-called axiom,
non-terminal, and end up with a word in 7.

14

In our previous example, a possible derivation for the terminal word b is
SégXY—M;XXX—}G bYXX—}(;bYX—M; bY—}G bXX—}(;bX—M;b (1)

If instead of focusing on the language generated by G, we emphasize the rewrite steps, then
G gives rise to a transition system S where states are words in ¥* and (1) now is a complete
computation of 8¢, starting from S.

Several natural orderings can be defined between words:

embedding: a word u embeds into a word v (also u is a subword of v), written u < v, iff u can
be obtained by erasing letters from wv.

left-factor: a word w is a left-factor (also, a prefix) of a word v, written u <j¢ v, iff v is some
uw.

Parikh: u <p v iff a permutation of « is a subword of v.
subset: u C v iff any symbol in # is in v.

<, <y are po’s while <p, and C are qo’s. Assuming a finite alphabet, < is a wqo (Higman’s
Lemma) while <y is not. Being larger than =, both <p and C are wqo’s.

Theorem 7.1. For any CFG G,

1. (8¢, =) is a WSTS with strong strict compatibility,
2. (Sq, <p) is a WSTS with strong strict compatibility,
3. (8q, C) is a WSTS with strong compatibility.

Proof. Left as an easy exercise. O

When it comes to applications, the precise choice of which ordering we consider is quite relevant
because many decidable properties for WSTS’s (e.g. coverability) are expressed in terms of the
ordering itself. When a choice is possible, using a larger ordering will often yield less information
but more efficient algorithms.

We illustrate this on two different well-structured views of context-free grammars. Fig. 6
displays FRT(S) for (S, <). Even though G is quite simple, there FRT(S) has 96 nodes.
When we switch to the (S, C) view (see Fig. 7) FRT(S) is a subtree of the previous tree and
only has 20 nodes.

Of course, there exist many extensions of CFG’s which remain partly analyzable. E.g. permu-
tative grammars [Mak85] are grammars where context-sensitive permutative rules “zS — Sa”
are allowed (between any pair of symbols).

Theorem 7.2. For any permutative grammar G, (Sq, %) is a downward-WSTS with reflexive
compatibility.

Proof. Left as an easy exercise. O

A machine model related to CFG’s are stack automata (also pushdown processes). Configu-
rations have the form (¢, w) where ¢ is a control-state and w € ¥* is a stack-content. Quasi-
orderings between words lead to quasi-orderings between configurations of a stack automaton.
E.g. with

def

(g, w) <i¢ (¢, 0"y S ¢ = ¢ and w <y w'.

15

XX0DY o XbY o €
XY X o
X

X X
Xxx——— \ bY —bX X
[]
_LXbY e /

bY XbY e bY —bX X bY X bYbX X e

/ \«* bX\\ b \%Yby/

bbY X e

bY XX o

aSS e bbY e bXX0DY e

bY X
/ \\ ks
 YbXXe

bY X X bXXX e bY bY:

TTRX XY
/)/beXX °
bY'b

BXXXX e / TIX XY o/beY bX X o

S BY DY ¥ B be)\n
\ XbY o \ \XXI)Y .
v \{ €
Y XXX PYDXXX o bXXDYDY o
Xy . e
BYX o bXXDY X o
J YXX\W
/ XbY o
Y'Y <§XXI)Y . /vabY .
bX XX b
/N~ BXXDY X e DY X— bY —-bXX— bX
bY XXX o bXDY X X o DYDY X o S~ Twye
r/bXX XbY o \ Y X
b;YX . BY DY o
bX X
oy e
bbY X bX
| \\> \x\ /b)gXbY .
BOXXX o bbYDY o bbY Y b bXXAierbYX o/vabYo/' b
/ | \\I)XX—» bX — bbY
bbXXe bBOXX e S~ N
bXXY o BYXXe bBYXe bbXXe

Figure 6: FRT(S) in (Sg, <). “®” marks subsumed nodes

16

XXbY o

XY X o
\ R

o
XXX
bY XbY e
aSS e bYX o
bY XX
bXXXX e
S bYDLY X o
\ XbY o
'4
LY XXX e
XY
bYX o
J /MXXO

bYY

bXXY o

Figure 7: FRT(S) in (Sq, C).

17

g9
[]

marks subsumed nodes

For stack-automata, the <j ordering is compatible with transitions but it is not a wqo (unless
we restrict the set of configurations). < is a wqo but it is not compatible with transitions (unless
we consider subclasses of stack automata).

8 The well-structure of Basic Process Algebra

Milner’s CCS [Mil89] is the paradigmatic process algebra. Recently, several fragments of CCS
with good decidability properties have been investigated [CHM94, Mol96]. Here we focus on
BPA.

BPA, short for Basic Process Algebra, is a subset of CCS first studied in [BBK87] where only
prefixing, non-deterministic choice, sequential composition and guarded recursion are allowed.
Here is an example BPA declaration:

A X = aY X+0bX +c
) Y = b XX+a
and a possible derivation is
XS5 VX DA XXX S50 XX Sp - (2)

BPA systems can be seen as CFG’s with head-rewriting (we lose head-rewriting when we re-
place sequential composition by parallel composition, yielding BPP’s). Here the states of Sa
are words in VX because the symbols in Tx are not stored in the state.

Because of the head-rewriting strategy, BPA systems do not have transitions compatible with

word-embedding. E.g. if in the previous example, we consider ¥ < XY X and step Y —b>A XX,
we cannot find some v’ with XY X —A ¢ and XX < ¢/. (Here as with stack automata, the
left-factor ordering is compatible with head-rewriting but it is not a wqo.)

However, if we restrict ourselves to Normed BPA (a class first introduced in [BBK87]) we can
find a well-structure. Formally, a BPA process is normed if it admits a terminating behavior.
A BPA declaration is normed if all its processes are normed. From a CFG viewpoint, this
corresponds to grammars in Greibach normal form and without useless productions. E.g. our
example A above is a normed BPA declaration.

With Normed BPA, the difficulty with head-rewriting can be circumvented.

Theorem 8.1. For a Normed BPA declaration A, (Sa, <) is a@ WSTS with stuttering compat-
ibility.

Proof. Assume u < v and u —A u’. Thus u # ¢. u has the form Xwu; and «’ is some wu; where
X —A W.

Because u < v, v has the form Y;...Y,, Xv; with uqy < vy. With normedness, there must
exist sequences o7, . .., 0., of transitions such that ¥; 23 ¢ for i = 1,...,m. Then there exists
a sequence

Vi Y Xoy BAYe. Y, Xop Ba - BBa Xvp —a woy

so that stuttering compatibility is established. O

18

Without any normedness hypothesis, a well-structured view of BPA processes is still possible:

Theorem 8.2. For any BPA declaration A, (Sa, <) is a downward-WSTS with reflexive com-
patibility.

Proof. Left as an easy exercise. O

9 The well-structure of Communicating Finite State Machines

A Communicating Finite State Machine (CFSM) [Boc78, BZ83] can be seen as a Finite State
Automaton (FSA) (Q,Y,...) equipped with a collection ¢4, ..., ¢, of n fifo channels. A transi-

tion of the FSA is labeled with a send action (e.g. q oy q') or a receive action (e.g. q ke q).

A CFSM C' naturally gives rise to a transition system Sc¢: a configuration of S¢ is some

s = (q,wy,...,w,) where ¢ € Q) is a control state of the FSA | and each w; € ¥* is a word

describing the current content of channel ¢;. In configuration s = (¢, w1, ..., w,), transition
1

q 5 ¢ is possible, reaching s’ = (¢, w1, ..., Wi_1, W@, Wiy1,...,w,), a new configuration

where the control state is now ¢’ and where the sent symbol @ has been appended after w;. In s,

transition ¢ aig q’ is only possible if channel ¢; contains an a in first position, i.e. if w; is some
a.w'. Then we reach (¢/,wy,...,wi—1, W, wiy1,...,wy).

Fig. 8 shows an example where P, and P, are two different automata communicating via two
fifo channels. This gives a CEFSM Cp, p, if we see P; and P as one single global FSA.

J

colc

P]Z
1

cila cle

clb

.G

Figure 8: A Communicating Finite State Machine

A possible behavior for this example is

c1la c1la

b !
<P0f]07 €, 6> — <P1f]07 a, 6> C1_> <P0f]07 a'b7 6> 1_> <P0(]17 b7 6> C2_>C <P0f]07 b7 C> — (3)
Because the channels are unbounded, S¢ is in general an infinite TS.
Fifo nets [MF85] are an extension of Petri nets where every place contains a fifo queue of

messages (instead of the usual tokens). Basically, fifo nets are CFSM’s with an explicit parallel
structure and more general synchronization primitives.

19

Several orderings between configuration are derived from orderings between words. E.g.

, def{ q=¢q and

Wy, ... wy) < g wh o wl) S .
(g, w1, W) S {5 wr,y W) w; K whfori=1,...,n

and similarly for <j. <j¢ is quite natural but it is still not compatible with the transitions of a
CFSM (unlike the pushdown automata case) and it is not a wqo. < and <p are wqo’s but they
are not compatible with the transitions.

It turns out that both CFSM’s and fifo nets are Turing-powerful [BZ83, MF'85]. Hence there
cannot exist a general effective well-structure for CFSM’s.

However, for many classes of CFSM’s, there exist interesting decidable problems. The rest
of this section considers different subclasses and their well-structure.

9.1 Free choice fifo nets, completely specified protocols and lossy channel
systems

These three models have many similarities. They are very useful when modeling systems as-
suming unsafe communication links, e.g. the alternating bit protocol.

Free choice fifo nets [FC87] are a subclass of fifo nets that are free from any deadlock caused
by the order of messages in the queues. Formally, in a free choice fifo net, whenever a place p has
more than one possible output transition (this corresponds to a receive action in CFSM speak)
then all these transitions only depend on p. This ensures that any message in a fifo queue may
eventually be output without deadlock [FC87].

Completely specified protocols [Fin94] are CFSM’s in which every control state ¢ admits the

.?
receive actions ¢ 5 ¢ for every action a. This action effectively “looses” a without changing
the current configuration.

Lossy channel systems [AJ93, AJ94] are CFSM’s with a modified semantics allowing the loss
of messages: in any configuration the system may loose any symbol from any channel. lL.e. any
transition (g, wy, ..., w,) = (¢, wy,...,w!, ..., w,) is possible when w! is obtained by removing
one symbol from w;.

Theorem 9.1. With the < (subword) ordering, free choice fifo nets, completely specified proto-
cols, and lossy channel systems are WS'TS with stuttering compatibility.

Proof. Left as an easy exercise. O

9.2 CFSM’s with insertion errors

Cécé et al. introduced CFSM’s with insertion errors [CFP95]. These are CFSM’s with a
modified behavior: at any time, arbitrary symbols (noise) can be inserted anywhere in the
channels. These too can be seen as well-structured systems, but not as easily as lossy channel
systems.

First, when we consider —~!, the transition relation backward, CFSM’s with Insertion Errors
are exactly lossy channel systems. This view can be useful for reachability analysis, and it helps
understand why [CFP95] considered forward analysis on CFSM’s with Insertion Errors, rather

20

than the usual backward analysis based on iterated pred-basis.

Another possibility uses forward transitions and the natural subword ordering;:

Theorem 9.2. For C, a CFSM with Insertion Errors, (Sc, <) is a downward-WSTS with stut-
tering compatibility.

Proof. Left as an easy exercise. O

9.3 Monogeneous CFSM’s

More involved orderings may be used. For example, consider C'p, p, from Fig. 8. It has transi-
tions compatible with C, defined by

pi = pir and ¢; = gj, and
/ o N Y
. € wy.(ab)* if i =4 =0, and
- C (ooaa w wh) & wy 1 =t)
(pig, wi, wa) T (pirgyr, wy, wp) < w) € wy.(ba)*if i =¢ =1, and
wh € wy.c*

This variation around the left-factor ordering is not a well-ordering in general, but it is a well-
ordering on Q1 X Q2 x [(ab)* + (ab)*a] X c*, a set containing all the reachable states of C'p, p,.
The same approach can be generalized to all Monogeneous CFSM’s [Fin82, Fin86].

Given a sequence ¢ of transitions firable from a configuration s = (g, wy, ..., w,), we write
out(c) for the vector (uy,...,u,) of sequences of messages output (sent) by o. Then s.out(o)
denotes (g, wiuy, ..., wyiy,).

We define an ordering < between configurations with
s < 5 & s.out(o) <i s .out (o) for all sequences o firable from s.

Monogeneous fifo nets are fifo nets where the send actions follow a certain regularity. See [Fin82,
Fin88] for details. < is a (decidable) wqo over the reachable states of monogeneous fifo nets. It
has strong compatibility.

Theorem 9.3. [Fin86] With <, monogeneous fifo nets (and CFSM’s) are WSTS’s with strong
compatibility.

Proof. Omitted. O

9.4 Other families

Cécé [Céc93] used a complicated ordering to show that Synchronizable CFSM [GRS85] are
WSTS’s with strict compatibility. It is also possible to show that half-duplex CFSM’s [CF97]
are well-structured.

10 Miscellaneous models

There exist several other examples of WSTS’s that we do not present at any length.

Some families are trivial, and we only mention them to show that WSTS’s generalize many
things:

21

e Finite state systems are WSTS’s with strong strict compatibility just by taking equality
as a wqo.

e More interestingly, all systems where an infinite set of states can be partitioned into a finite
number of equivalence classes can be turned into WSTS’s if the notion of equivalence one
assumes enjoys the compatibility requirements.

For instance, several variants of bisimulation have the compatibility requirements we men-
tioned. By definition, this applies to the data-independent systems of [JP93]. Similarly,
timed-automata [AD94] and some hybrid automata [Hen95] can be seen as WSTS’s.

Some families are issued from models less well-known than Petri nets or context-free gram-
mars:

e The integral relational automata of [Cer94] are some kind of counter machine where the
contents of counters can be compared and moved around but no addition or subtraction
is allowed. The can be seen as some kind of WSTS’s though they are infinitely branching
because of input actions.

e The Recursive Parallel Program Schemes of [KS97a, KS97b] are some kind of nets with
a restricted form of synchronization and where markings have a hierarchical, tree-like,
structure. Two different wqo’s turn them into WSTS’s or downward-WSTS’s.

e Using the fact that (several different notions of) embedding between graphs are wqo’s,
it is possible to find WSTS’s in the field of graph-grammars and graph-rewriting sys-
tems [Cou90].

Other families of WSTS’s are obtained by applying simple general restrictions or structuring
modifications to well-known models:

e The lossy system idea. It can be applied to many models: Lossy Turing Machines,
Lossy Counter Machines, etc. Admittedly, a CFSM with lossy buffers is more realistic
than a Turing Machine with lossy memory.

e The home-state idea. An home-state is a state that can be reached from any reachable
state. If the initial state sy of some § is a home state, then the trivial ordering S x S
is a wqo with stuttering compatibility because any step s; — s, can be mimicked from
any other state s| simply with s} 5 50 = 51 — sy, If we take a less trivial wqo, e.g.
control-state equality, we have a WSTS with transitive compatibility.

Clearly, by adding a simple general “s — s¢” transition, it is possible to modify most
models so that their initial state is a home state, turning the model into a resetable
variant that is a WSTS. The behavior of the resetable variant has obvious relations with
the behavior of the previous untouched system (agreed, the resetable variant does not
terminate).

We shall let the reader ponder on an interesting exercise: what can be inferred by trying
to apply our five decidability results on Resetable Turing Machines 7

22

Part III
From transition systems to well-structured
transition systems

11 WSTS’s everywhere

Clearly, the several examples we presented in Part II followed a common scenario: we inves-
tigated well-known operational models of computation, and exhibited wqo’s that enjoyed one
form or compatibility or another. Often the wqo was suggested by the precise nature of the
states (words, tuples of integers, ...) and then compatibility sometimes relied on restrictions
on the possible transitions. Sometimes the wqo was quite surprising.

In this section, we would like to discuss in more general terms the problem of turning a given
TS into a WSTS.

This is a quite natural and interesting question. No mention of this question is made
in [ACJY96]. Finkel only discussed it in his habilitation thesis [Fin86] where he showed that
there is a largest compatible well-ordering and that this ordering is not decidable between mark-
ing of Petri nets. However, his analysis suffers from the problems we raised in the introduction
of this article so that no clear and general answer is offered.

Our main result in this section is

Theorem 11.1. (Ubiquity.) For any T'S S, there is a wqgo <t such that (S,<r) is a WSTS
with strict strong compatibility.

Proof. Consider § = (5, —) and, for s € 9, define T'(s) as the length of a longest computation
starting from s (such a longest computation exists because our TS’s are finitely branching). 7'(s)
belongs to N'= N U {w}. Define s <7 &' as T(s) < T(s'). <7 is a wqo (induced by the natural
wqo over N).

There remains to check strict strong compatibility. So consider T'(s1) < T'(s}) and s; — s9
If T(s]) = w then | admits a non-terminating computation and there is a transition s{ — s
with T'(s}) = w. Otherwise T'(s}) = n > T'(s1) and T'(sg) < T'(s1) so that n > 0 and there exists
a sy — s, with T'(s}) = n— 1. In both cases T'(sz) < T'(s}). Additionally, if T'(s1) < T'(s}) then
T(s2) < T(sh). O

Furthermore <7 is canonical in the following sense:
Proposition 11.2. If (S, <) is a WSTS with transitive compatibility, then < C <r.

Proof. Assume (S, <) is a WSTS with transitive compatibility and s; < ¢;. Given any sequence

$1 — Sg...— 8y, transitive compatibility implies the existence of some t; & ty... & t,. Then
clearly T'(s1) < T'(t1). O

Theorem 11.1 tells us that all TS’s can be well-structured. Even TS’s issued from formalisms
with Turing power. Because the TS associated to a Turing Machine has finite branching and
effective Suce, the <7 wqo cannot be decidable in general, otherwise the decidability results for
effective WSTS’s would apply. Indeed we have

23

Theorem 11.3. Assume S has effective Suce. Then <t is decidable among the states of S iff
termination is decidable for states of S.

Proof. (=): use Theorem 4.6.

(<): Assume termination is decidable and consider a state s. If s does not terminate, then
T(s) = w. If s terminates, it is easy to compute 7'(s) € N using the effectiveness of Suce (and
finite branching). Hence T is computable, so that <7 is decidable. O

Finally, the <7 wqo suffers from two main drawbacks:
e it is only computable when termination is decidable,

e it lacks expressive power.

Of course, the first inconvenient is shared with all compatible wqo’s with transitive compatibility.

The second inconvenient calls for more comments. Assume <7 is decidable for some TS S.
Pick two states s and ¢. Then, using Theorem 4.8 we can decide whether starting from s, the
system inevitably reach a state not covered by ¢. This means, “inevitably reach a state farther
to termination than ¢” (in which case s itself was already not covered by t). Using Theorem 3.6,
we can tell whether, starting from s, it is possible to cover {. Again “covering t” is not very
meaningful. It is much more meaningful to cover a marking of a Petri net (or a configuration of
a CFSM) with the C (or <) ordering than with the <7 ordering.

Except for Theorem 4.6 (termination), all the general decidability theorems we gave in this
article involve properties defined in term of the < ordering. They are mainly interesting when
< itself is a rich quasi-ordering, reflecting some structure of the configurations of the system
under scrutiny. Note that the well-structuring wqo’s we gave in Part Il were all inspired by the
structure of the configurations.

12 Labeled transition systems

Theorem 11.1 is possible because we considered TS’s without labels. Here we briefly consider

labeled TS’s.

Definition 12.1. A labeled transition system (LTS) is a structure S = (S,L,—,...) where
L ={a,b,...} is a set of labels and —C S x L x S is a set of transitions.

For LTS’s it is possible to restrict the WSTS idea so that compatibility preserves labels. This
is what [ACJY96] and some proposals in [Fin90] assume. As explained in our introduction, we
think this viewpoint should be seen as a restriction of the general framework we set up in this
article.

Definition 12.2. A well-structured LTS (WSLTS) with strong compatibility is a LTS § =
(S, L, —, <) equipped with a go < C S x S between states such that the two following conditions
hold:

(1) well-quasi-ordering: < is a wqgo, and

2) strong compatibility: < is compatible with —, i.e. for all sy <t and transition s; — sy
g P y P s ’
there exists a transition t| — ty such that sy < t,.

24

Here again our definition does not mix effectiveness and structural issues. It is possible to
have less restrictive compatibility that still preserves labels but we will not pursue this here.

Here, compatibility in Definition 12.2 really states that < is a simulation in the classical LTS
understanding [Mil89]. Indeed, if we use C to denote the simulation quasi-ordering, and assume
(§,<) is a WSLTS with strong compatibility, then < C C. Furthermore assuming that S is a
LTS, we have

Theorem 12.3. There exists a < such that (S, <) is @ WSLTS with strong compatibility iff C
is a wqo over the states of .

Proof. 1f (§,<)is a WSLTS then <CLC but any qo containing a wqo is itself a wqo. Reciprocally,
if C is a wqo over the states of &, it is possible to pick < E'C and get a WSLTS. U

Observe that <7 and C agree in the unlabeled case. In the labeled case, C is not always a wqo
so that Theorem 12.3 can be used to prove that a given LTS admits no well-structured view,
independently of effectiveness issues.

For example, consider the BPA declaration

A X = a+aXa
Y = bXb

Here the set of states reachable from Y contains all configurations a™b for n > 0 and, over such

states, C coincide with <. Clearly it is not a wqo and, consequently, Sa cannot be turned into

a WSLTS with strong compatibility.

13 Conclusion

In this article we proposed a definition of well-structured transition systems that is both sim-
pler and more general than the earlier proposals of Finkel and Abdulla et al.. Simplicity and
generality come essentially from a clear separation of structural and effectiveness issues.

The benefits of this new approach are multiple: simpler proofs, more general theorems, more
instances of WSTS’s. Regarding this last point, we would like to stress again that both Finkel’s
and Abdulla et al’s earlier definitions did not lead to that many examples of WSTS’s. On the
other hand, we easily exhibited instances of the generalized WSTS notion in several operational
models of computation. Figure 9 classifies the examples we gave. Of course many more families
of models exist and our list is (probably) far from exhaustive. We welcome any additional
example that readers could provide.

Directions for future work are numerous, some of them linked to methodological and practical
issues, some more theoretical. Clearly the issue of finding well-structuring wqo’s for given
systems is very important. We just started investigating it in Part III.

Another general direction is to look for new decidability results. In this article we did not
describe all existing results. We omitted the decision method for simulation with a finite system
(see [ACJIY96]) or the algorithm for the coverability set (see [Fin87a]). Still we believe there is
much room for new decidability results. In all likelihood such results will have to make some
additional hypothesis or another, which may differ from the hypothesis we used in this article.

25

ST
, Y o < - 3 -Qe
S S eSS
SEFFTId @
Petri nets ° ofle]o|o]o
post self-modifying nets ° o|e]|o]|o|o| Petri Nets and
Petri nets with transfer arcs ° of|le]| ool ol their
Petri nets with reset arcs ° o e | 0| o] ol extensions
BPP with inhibitory arcs ° °
CFSM’s with Lossy Channels || o ° o | o0
CFSM’s with insertion errors ° e | o || Communicating
Free-choice fifo nets ° e | o || Finite State
Monogeneous CFSM’s o o | o || Machines
Synchronizable CFSM’s o olo
BPA (Basic Process Algebra) o
: Process
BPP (Basic Parallel Process) ol e © | ° || Alwebras
Normed BPA &
Context-free grammars ° ol e o | o || String
Permutative grammars ° Rewriting
RPPS Schemes ° °
RPPS Schemes with <_ °]
Integral Relational Automata ° Misc. models
Timed Automata °
Essentially finite systems e|le|o0|oO .
Generic
Lossy systems ° °)
Resetable systems ° WSTS’s

(A e indicates presence, a o is presence implied by a stronger e.)

Figure 9: Some families of well-structured transition systems

26

References

[ABBY7]

[ACTY96]

[ADY4]

[AJ93]

[AJ94]

[AJ97]

[AKT77]

[BBK&7]

[BCG8S]
[BCM*92]
[BocT8]
[BZ83]
[Céc93]

[Cer94]

[CF97]

[CFP95]

J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and pushdown automata.
In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 1, chap-
ter 3, pages 111-174. Springer-Verlag, 1997.

P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability theorems for
infinite-state systems. In Proc. 11th IEEE Symp. Logic in Computer Science (LICS’96), New
Brunswick, NJ, USA, July 1996, pages 313-321, 1996.

R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183-235, 1994.

P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proc. Sth
IEEE Symp. Logic in Computer Science (LICS’93), Montreal, Canada, June 1993, pages
160-170, 1993.

P. A. Abdulla and B. Jonsson. Undecidability of verifying programs with unreliable channels.
In Proc. 21st Int. Coll. Automata, Languages, and Programming (ICALP’94), Jerusalem,
Israel, July 1994, volume 820 of Lecture Notes in Computer Science, pages 316-327. Sprin-
ger-Verlag, 1994.

P. A. Abdulla and B. Jonsson. Model-checking through constraint solving. In Methods and
Tools for the Verification of Infinite State Systems, Proceedings of the Grenoble-Alpe d’Huez
FEuropean School of Computer Science, May 23-25, Grenoble, France. VERIMAG, St-Martin
d’Heres, France, 1997.

T. Araki and T. Kasami. Some decision problems related to the reachability problem for
Petri nets. Theoretical Computer Science, 3(1):85-104, 1977.

J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. In Proc. Parallel Architectures and Languages
Europe (PARLE’87), Findhoven, NL, June 1987, vol. II: Parallel Languages, volume 259 of
Lecture Notes in Computer Science, pages 94-111. Springer-Verlag, 1987.

M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in
propositional temporal logic. Theoretical Computer Science, 59(1-2):115-131, 1988.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 102" states and beyond. Information and Computation, 98(2):142-170, 1992.

G. von Bochmann. Finite state description of communication protocols. Computer Networks

and ISDN Systems, 2:361-372, 1978.

D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2):323-342, 1983.

G. Cécé. FEtat de lart des techniques d’analyse des automates finis communicants. Rapport
de DEA, Université de Paris-Sud, Orsay, France, September 1993.

K. Cerans. Deciding properties of integral relational automata. In Proc. 21st Int. Coll.
Automata, Languages, and Programming (ICALP’94), Jerusalem, Israel, July 1994, volume
820 of Lecture Notes in Computer Science, pages 35-46. Springer-Verlag, 1994.

G. Cécé and A. Finkel. Programs with quasi-stable channels are effectively recognizable. In
Proc. 9th Int. Conf. Computer Aided Verification (CAV’97), Haifa, Israel, June 1997, volume
1254 of Lecture Notes in Computer Science, pages 304-315. Springer-Verlag, 1997.

G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(1):20-31, 1995.

27

[CHM94]

[Cia94]

[Cou90]

[DFS98]

[Dic13]

[Esp97]

[FC87]

[Fin82]

[Fin86]

[Fin87a]

[Fin87b]

[Fin88]

[Fin90]

[Fin94]

[GR85]

[GW89)]

[Hen95]

S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS. The Computer Journal,
37(4):233-242, 1994.

G. Ciardo. Petri nets with marking-dependent arc cardinality: Properties and analysis. In
Proc. 15th Int. Conf. Applications and Theory of Petri Nets, Zaragoza, Spain, June 1994,
volume 815 of Lecture Notes in Computer Science, pages 179-198. Springer-Verlag, 1994.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, vol. B, chapter 5, pages 193-242. Elsevier Science
Publishers, 1990.

C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecid-
ability, January 1998. To appear in Proc. ICALP’98, Aalborg, DK.

L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with r distinct
prime factors. Amer. Journal Math., 35:413-422,1913.

J. Esparza. More infinite results. In Proc. 1st Int. Workshop on Verification of Infinite State
Systems (INFINITY’96), Pisa, Italy, Aug. 1996, volume 5 of Flectronic Notes in Theor.
Comp. Sci. Elsevier, 1997.

A. Finkel and A. Choquet. Fifo nets without order deadlock. Acta Informatica, 25(1):15-36,
1987.

A. Finkel. About monogeneous fifo Petri nets. In Proc. 3rd European Workshop on Applica-
tions and Theory of Petri Nets, Varenna, Italy, Sep. 1982, pages 175-192, 1982.

A. Finkel. Structuration des Systémes de Transitions. Applications au Contréle du Paral-
lelisme par Files FIFO. These de Docteur d’Etat, Université de Paris-Sud, Orsay, France,
June 1986.

A. Finkel. A generalization of the procedure of Karp and Miller to well structured transition
systems. In Proc. 14th Int. Coll. Automata, Languages, and Programming (ICALP’87), Karl-
sruhe, FRG, July 1987, volume 267 of Lecture Notes in Computer Science, pages 499-508.
Springer-Verlag, 1987.

A. Finkel. Well structured transition systems. Research Report 365, Lab. de Recherche en
Informatique (LRI), Univ. Paris-Sud, Orsay, August 1987.

A. Finkel. A new class of analyzable CFSMs with unbounded FIFO channels. In Prelim.
Proc. 8th IFIP WG 6.1 Int. Symp. Protocol Specification, Testing and Verification, Atlantic
City, New Jersey, USA, June 1988, 1988.

A. Finkel. Reduction and covering of infinite reachability trees. Information and Computation,

89(2):144-179, 1990.

A. Finkel. Decidability of the termination problem for completely specificied protocols. Dis-
tributed Computing, 7:129-135, 1994.

M. G. Gouda and L. E. Rosier. Synchronizable networks of communicating finite state ma-
chines. Unpublished manuscript, 1985.

R. J. van Glabbeek and W. P. Weijland. Branching time and abstraction in process algebra.
In G. X. Ritter, editor, Information Processing 89, pages 613-618. North-Holland, August
1989.

T. A. Henzinger. Hybrid automata with finite bisimulations. In Proc. 22nd Int. Coll. Au-
tomata, Languages, and Programming (ICALP’95), Szeged, Hungary, July 1995, volume 944
of Lecture Notes in Computer Science, pages 324-335. Springer-Verlag, 1995.

28

[High2]

[JP93]

[KM69]

[Kru72]

[KS97a]

[KS97b]

[Mk85)
[MF85]
[Mil89)]
[Mol96]
[Pet81]
[Rei85]

[Val78]

G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7):326-336, 1952.

B. Jonsson and J. Parrow. Deciding bisimulation equivalences for a class of non-finite-state
programs. Information and Computation, 107(2):272-302, 1993.

R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147-195, 1969.

J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. J. Com-
binatorial Theory, Series A, 13(3):297-305, 1972.

0. Kouchnarenko and Ph. Schnoebelen. A model for recursive-parallel programs. In Proc.
Ist Int. Workshop on Verification of Infinite State Systems (INFINITY’96), Pisa, Italy, Aug.
1996, volume b of Electronic Notes in Theor. Comp. Sci. Elsevier, 1997.

O. Kushnarenko and Ph. Schnoebelen. A formal framework for the analysis of recursive-
parallel programs. In Proc. 4th Int. Conf. Parallel Computing Technologies (PaCT’97),
Yaroslavl, Russia, Sep. 1997, volume 1277 of Lecture Notes wn Computer Science, pages
45-59. Springer-Verlag, 1997.

E. Makinen. On permutative grammars generating context-free languages. BIT, 25:604-610,
1985.

G. Memmi and A. Finkel. An introduction to FIFO nets—monogeneous nets: A subclass of
FIFO nets. Theoretical Computer Science, 35(2-3):191-214, 1985.

R. Milner. Communication and Concurrency. Prentice Hall Int., 1989.

F. Moller. Infinite results. In Proc. 7th Int. Conf. Concurrency Theory (CONCUR’96),
Pisa, Italy, Aug. 1996, volume 1119 of Lecture Notes in Computer Science, pages 195-216.
Springer-Verlag, 1996.

J. L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall Int., 1981.

W. Reisig. Petri Nets. An Introduction, volume 4 of FEATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1985.

R. Valk. Self-modifying nets, a natural extension of Petri nets. In Proc. 5th Int. Coll.
Automata, Languages, and Programming (ICALP’78), Udine, Italy, Jul. 1978, volume 62 of
Lecture Notes in Computer Science, pages 464-476. Springer-Verlag, 1978.

29

