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Abstract

Assume-guarantee reasoning enables a “divide-and-cdhgpproach to the verification

of large systems that checks system components separdigéyusingassumptionsibout
each component’s environment. Developing appropriatenagtons used to be a difficult
and manual process. Over the past five years, we have dededdpemework for perform-
ing assume-guarantee verification of systems in an increahand fully automated fash-
ion. The framework uses an off-the-shelf learning algonitto compute the assumptions.
The assumptions are initially approximate and become mueige by means of coun-
terexamples obtained by model checking components separéhe framework supports
different assume-guarantee rules, both symmetric and rasyric. Moreover, we have re-
cently introducedalphabet refinementvhich extends the assumption learning process to
also inferassumption alphabetd his refinement technique starts with assumption alpha-
bets that are a subset of the minimal interface between a@oemp and its environment,
and adds actions to it as necessary until a given propempisisto hold or to be violated in
the system. We have applied the learning framework to a nuoflEase studies that show
that compositional verification by learning assumptions lsa significantly more scalable
than non-compositional verification.

Key words: Assume-guarantee reasoning, model checking, labelesitiansystems,
learning, proof rules, compositional verification, safptgperties.

1 Introduction

Model checking is an effective technique for finding subtiees in concurrent
systems. Given a finite model of a system and a required psopéthat system,
model checking determines automatically whether the ptgpe satisfied by the
system. The cost of model checking techniques may be exgahenthe size of
the system being verified, a problem known as state expl¢sRInThis can make
model checking intractable for systems of realistic size.

Compositional verification techniques address the stgiesion problem by us-
ing a “divide-and-conquer” approach: properties of thetaysare decomposed
into properties of its components and each component istheoked separately.
In checking components individually, it is often necesst@ryincorporate some
knowledge of the context in which each component is expdotederate correctly.
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Assume-guarantee reasoning [24,31] addresses this igsisgrigassumptionthat
capture the expectations that a component makes abouviter@ment. Assump-
tions have traditionally been developed manually, which liraited the practical
impact of assume-guarantee reasoning.

To address this problem, we have proposed a framework [BEsfuly automates
assume-guarantee model checking of safety propertiesnite fabeled transition
systems. At the heart of this framework lies an off-the-Ehedrning algorithm,
namely L* [4], that is used to compute the assumptions. Ininsintiation of this
framework, a safety propert¥ is verified on a system consisting of components
M; and M, by learning an assumption under whi¢h satisfiesP. This assump-
tion is then discharged by showing it is satisfied k. In [6] we extended the
learning framework to support a set of novel symmetric assgoarantee rules
that are sound and complete. In all cases, this learningebi@amework is guaran-
teed to terminate, either stating that the property holds$te system, or returning
a counterexample if the property is violated.

Compositional techniques have been shown particularlecatfe for well-
structured systems that have small interfaces between @woemts [8,20]. Inter-
faces consist o&ll communication points through which components may influ-
ence each other’s behavior. In our initial presentationthefframework [15,6] the
alphabets of the assumption automata includiédhe actions in the component
interface. In a case study presented in [30], however, werobd that a smaller al-
phabet can be sufficient to prove a property. This smalldraldpt was determined
through manual inspection and with it, assume-guarantagoreng achieves or-
ders of magnitude improvement over monolithie. non-compositional, model
checking [30].

Motivated by the successful use of a smaller assumptioraalgthin learning, we
investigated in [19] whether the process of discovering alEnalphabet that is
sufficient for checking the desired properties can be auteth&maller alphabets
mean smaller interfaces among components, which may leath&tler assump-
tions, and hence to smaller verification problems. We deadoanalphabet re-
finementechnique that extends the learning framework so thatrtsstath a small
subset of the interface alphabet and adds actions to it &ssa&y until a required
property is either shown to hold or shown to be violated byfyxtem. Actions to
be added are discovered by analysis of the counterexamiptamed from model
checking the components.

The learning framework and the alphabet refinement haveibggdamented within
the LTSA model checking tool [27] and they have been effedtivwerifying real-
istic concurrent systems, such as the ones developed in Nok§Acts. This paper
presents and expands the material presented in [15] (afiggarning framework
for automated assume-guarantee reasoning with an asyromgs), [6] (learning
for symmetric rules), and [19] (alphabet refinement for thigioal framework).



In addition, we describe here a new extension that uses alairaule, alphabet
refinement for symmetric and circular rules, and present eguerimental data.

The rest of the paper is organized as follows. Section 2 des/background on
labeled transition systems, finite-state machines, asguamntee reasoning, and
the L* algorithm. Section 3 follows with a presentation oétlearning framework
that automates assume-guarantee reasoning for asymumnadraircular rules. Sec-
tion 4 presents the extension of the framework with symroetries, followed by
Section 5 which presents the algorithm for interface alghagfinement. Section 6
provides an experimental evaluation of the described tgci@s. Section 7 surveys
related work and Section 8 concludes the paper.

2 Preliminaries

In this section we give background information for our wonle introduce labeled
transition systems and finite-state machines, togethér théir associated opera-
tors, and also present how properties are expressed an#lethetthis context.
We also introduce assume-guarantee reasoning and thenrodttbe weakest as-
sumption. Moreover we provide a detailed description of ldgning algorithm
that we use to automate assume-guarantee reasoning. Tee neay wish to skip
this section on the first reading.

2.1 Labeled Transition Systems (LTSs)

Let Act be the universal set of observable actions and tgnote a local actioan-
observablgo a component’s environment. We usé& denote a speciakror state
which models the fact that a safety violation has occurretthénassociated transi-
tion system. We require that the error state have no outgoamgitions. Formally,
an LTS M is a four-tuple(@, oM, 6, qo) Where:

Q is a finite non-empty set of states

alM C Act is a set of observable actions called #ighabetof M
JCQ x (aMU{r}) x Q is atransition relation

go € Q is the initial state

We usell to denote the LTS{r}, Act, ), 7). An LTS M = (Q, oM, , qo) iS non-
deterministicif it contains r-transitions or if there exist§y, a,¢'), (¢,a,¢") € 0
such thay # ¢”. Otherwise M is deterministic

As an example, consider a simple communication channettmetists of two com-
ponents whose LTSs are shown in Fig. 1. Note that the initéesof all LTSs in
this paper is state. ThelnputLTS receives an input when the actimputoccurs,
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Fig. 1. Example LTSs

and then sends it to tHeutputLTS with actionsend After being sent some data,
Outputproduces some output using the actariputand acknowledges that it has
finished, by using the actioack At this point, both LTSs return to their initial

states so the process can be repeated.

2.1.1 Traces

A tracet of an LTS M is a finite sequence of observable actions that label the tran
sitions thatM can perform starting at its initial state (ignoring thdransitions).
For example{input) and (input, sen¢l are both traces of thenput LTS in Fig. 1.

We sometimes abuse this notation and denote linyth a trace and its trace LTS.
For a tracet of lengthn, its trace LTS consists of + 1 states, where there is a
transition between states andm + 1 on them™ action in the trace. The set of

all traces of an LTSV is the language oM and is denoted (/). We denote as
errTr(M) the set of traces that lead 49 which are called therror tracesof M.

For X C Act, we uset[X to denote the trace obtained by removing frorall
occurrences of actions¢ .. Similarly, M [Y is defined to be an LTS over alpha-
bet>: which is obtained from\/ by renaming tor all the transitions labeled with
actions that are not iix. Let ¢, t' be two traces. LeE, >’ be the sets of actions
occurring int, t', respectively. By theymmetric differencef ¢ andt’ we mean the
symmetric difference of the selsandy’.

2.1.2 Parallel Composition

Let M = (Q,aM,0,q) andM' = (Q',aM',d', q;). We say thatV/ transitsinto

M’ with actiona, denotedM -+ M’, if and only if (g9, a,q)) € ¢ and either
Q =Q', aM = oM’ andd = ¢’ for g; # =, or, in the special case whegg = T,

M =1I.

The parallel composition operatpiis a commutative and associative operator that
combines the behavior of two components by synchronizia@ttions common to
their alphabets and interleaving the remaining actionsekample, in the parallel
composition of thénputandOutputcomponents from Fig. 1, actions send and ack
will each be synchronized while input and output will be ndaved.

Formally, letM; = (Q', aM,, 8", q5) and My = (Q? aM,, 62, ¢3) be two LTSs.
If M; = Il or M, = II, thenM; || M, = II. Otherwise,M; || M, is an LTS
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Fig. 2.Order Property

M =(Q,aM,d,q), whereQ = Q' x Q% ¢ = (¢}, ¢3), M = aM; U aM,, and
o0 is defined as follows, whereis either an observable action or

M, - M!,a ¢ aM, My — M), a ¢ aM,
M,y || My = M || My M,y || My = M, || M}

M1L>M{,M2L>Mé,a7é7'
My || My — M || My

2.1.3 Properties

We call a deterministic LTS that contains natates aafety LTSA safety property
is specified as a safety LTB, whose languagé€ (P) defines the set of acceptable
behaviors ovetr P. For an LTSM and a safety LTS such thatP C aM, we say
that M satisfiesP, denotedV/ |~ P,ifand onlyifVt € L (M) : (t[aP) € L (P).

When checking a property?, an error LTS denoted P, is created, which
traps possible violations with the state. Formally, the error LTS of a property
P — <Q, OéP, 5, q0> IS Perr — <Q U {ﬂ-}, O{Perr, 5’, q0>, Whereaperr — CYP and

&' =5U{(g,a,7) | g€ Q,a € aP, and?q € Q: (¢,a,q) € §}

Note that the error LTS isomplete meaning each state other than the error state
has outgoing transitions for every action in its alphabdsofote that the error
traces ofP,, define the language dt’'s complement (see Section 2.2.3 below).

For example, th@©rder property shown in Fig. 2 captures a desired behavior of the
communication channel shown in Fig. 1. The property conegrigates and1, and

the transitions denoted by solid arrows. It expresses ttdtat inputs and outputs
come in matched pairs, with the input always preceding theuwiuThe dashed
arrows illustrate the transitions to the error state thatadded to the property to
obtain its error LTSQOrdere,.

To detect violations of a property by a componentV/, the parallel composi-
tion M || Peyr is computed. It has been proved thet violates P if and only if
the  state is reachable in/ || Pey [8]. For example, state is not reachable in
Input || Output|| Order, SO we conclude thahput || Output|= Order.



2.2 LTSs and Finite-State Machines

As described in Section 4, some of the assume-guaranteregjeire the use of the
“complement” of an LTS. LTSs are not closed under complematént, so we need
to define here a more general class of finite-state machirg&d¢Fand associated
operators for our framework.

An FSM M is a five-tuple(Q, «M, §, qo, F) where@, «M, §, andq, are defined as
for LTSs, andF' C () is a set of accepting states.

For an FSMM and a trace, we used(q, t) to denote the set of states thet can
reach after readingstarting at state. A tracet is said to beacceptedoy an FSM
M = (Q,aM, 6, qo, F) if 6(go, t) N F # . Thelanguage accepted hy/, denoted
L (M) isthe set{t | (g, t) N F # 0}.

For an FSM M = (Q,aM,d,q, F), we use LTS(M) to denote the LTS
(Q,aM, s, q) defined by its first four fields. Note that this transformatiwoes
not preserve the language of the FSM,, in some cases (M) # L (LTS(M)).
On the other hand, an LTS is in fact a special instance of an,K8Me it can be
viewed as an FSM for which all states are accepting. From nmowwenever we
apply operators between FSMs and LTSs, it is implied thath ¢3S is treated as
its corresponding FSM.

We call an FSMV/ deterministidf and only if L7'S(M) is deterministic.

2.2.1 Parallel Composition of FSMs

Let M, = (Q',aM;, 8", q, F') and My = (Q?, aMsy, 6%, ¢35, F?) be two FSMs.
Then), || M, is an FSMM = (Q, aM., é, gy, F'), where:

o (Q,aM,d,q) = LTS(M,) || LTS(M,), and
o FF={(s!,s%) e Q' x Q%] s' € F!' ands? € F?}.

Note 1
['(Ml || MQ) = {t ‘ t rOle € /:,(Ml)/\t rOéMQ € [,(MQ)/\t € (OéMlUCYMQ)*}

2.2.2 Properties

For FSMsM andP whereaP C aM, M |= P if and only if
Vie L(M):tlaP € L(P)



2.2.3 Complementation

The complement of an FSM (or an LT8}, denoted:o M, is an FSM that accepts
the complement of\/’s language. It is constructed by first making determinis-
tic, subsequently completing it with respecti®/, and finally turning all accepting
states into non-accepting ones, and vice-versa. An automg&icomplete with re-
spect to some alphabet if every state has an outgoing ti@méir each action in
the alphabet. Completion typically introduces a non-atingstate and appropriate
transitions to that state.

2.3 Assume-Guarantee Reasoning

2.3.1 Assume-Guarantee Triples

In the assume-guarantee paradigm a formula is a ttigleV/ (P), whereM is a
componentp is a property, andd is an assumption about’’s environment. The
formula is true if wheneved/ is part of a system satisfying, then the system
must also guarantel [21,31],i.e,VE, E || M = AimpliesE || M |= P. For
LTS M and safety LTSs! andP, checking(A) M (P) reduces to checking if state
misreachable iM | M || Per. Note that whemP C oA UM, this is equivalent
to A || M = P. Also note that we assume that contains nar states.

Theorem 1 (A) M (P) is true if and only ifr is unreachable imA || M || Pey.

PROOF.

e “=":Assume(A) M (P) istrue. We show that is unreachable ial || M || Per
by contradiction. Assume is reachable i || M || P by a tracef. As a re-
sult,tfaA € L(A),t|aM € L (M), andt[aP € errTr(Pe) (See Note 1 on
page 7).

Let £ be the trace LTS for the trace] oA, with its alphabet augmented
sothatF | M = AandE || M = P are well definedi.e,, aA C (M U aF)
and aP C (aM U aF). By construction,C (E) consists oft [aA and all of
its prefixes. Since [aA € L(A), we can conclude that = A. As a result,
E || M [ A.

From our hypothesis thatA) M (P) is true, it follows thatF | M = A
implies E || M = P. However, tflaE € L(FE), tlaM € L(M), and
tlaP € errTr(Pes). Moreover t’'s actions belong toaF U aM U aP.
Thereforen is reachable inE || M || P On tracet. As a result, we can
conclude tha¥ || M [~ P, which is a contradiction. Thus, is not reachable in
A || M || Per, as desired.



e “<" Assumer is unreachable iMA || M || Pe. We show that(A) M (P)
by contradiction. AssuméA) M (P) is not true,i.e, assumedF such that
E||M = AbutE | M # P.(Again, we assume that is such that= is well
defined in the previous sentence.)

Since E || M = P thenr is reachable inE || M || Per by some trace.
As aresultt[aE € L(E), t|aM € L (M), andt[aP € errTr(Per). Since
E|| M = AandaA C aE U oM, it follows thatt [aA € £ (A). As a resultyr
is reachable i | M || Per by ¢ ] (A U aM U aP), which is a contradiction.
Thus,(A) M (P) is true, as desired. O

2.3.2 Weakest Assumption

A central notion of our work is that of theeakest assumptid20], defined for-
mally here.

Definition 2 (Weakest Assumption for}) Let M, be an LTS for a component,
P be a safety LTS for a property required bf;, and > be the interface of the
component to the environment. The weakest assumgtion of A/, for ¥ and
for property P is a deterministic LTS such that: b4, », = ¥, and 2) for any
componeniMy, (truey M, || (M, [X) (P) if and only if (true) My (A, 5)

The notion of a weakest assumption depends on the interteeebn the compo-
nent and its environment. Accordingly, in the second coodiabove, projecting
M, onto X forces M, to communicate withi/; only through actions irt. In [20]
we showed that weakest assumptions exist for componentsssqul as LTSs and
properties expressed as safety LTSs. Additionally, we ipex¥ an algorithm for
computing weakest assumptions.

The definition above refers tany environment componernit/, that interacts with
component)/; via an alphabeE. When M, is given, there is a natural notion of
the completanterfacebetweeni/, and its environmeni/,, when propertyP is
checked.

Definition 3 (Interface Alphabet) Let M; and M, be component LTSs, and
P be a safety LTS. The interface alphab&; of M, is defined as:
E[ == (OéMl U CYP) N OzMQ.

Definition 4 (Weakest Assumption) GivenM;, M,, and P as above, the weakest
assumptiort,, is defined ast,, 5, .

Note that from the above definitions, it follows tRatue) M, || M, (P) if and only
if (true) M, (A, ). The following lemma will be used later in the paper.

Lemma5 Givenl,, P, andX as above, thegA,, ;) M, (P) holds.



(1) LetS=FE = {\}
loop {

(2) Updaté€l’ using queries

while (S, E, T') is not closed
3) Add sa to S to makeS closed where € S anda € X
(4) Updat€l” using queries

1
(5)  Construct candidate DFSK from (S, E, T)
(6) Make the conjecturé
(7) if Cis correct returrC

else
(8) Adde € ¥* that withesses the counterexampleto

Fig. 3. The L* Algorithm

PROOF. A,y Y = A, y. If in Definition 2 we substituted,, 5, for M, we ob-
tain that: (true) M, || A, » (P) if and only if (true) A, s, (A, ). But the latter
holds trivially, so we conclude thdtrue) M, || A, x (P), which is equivalent to
(Ay ») M, (P), always holds. O

2.4 The L* Learning Algorithm

The learning algorithm L* was developed by Angluin [4] antelaimproved by
Rivest and Schapire [32]. L* learns an unknown regular laggpi/ over alphabet
¥ and produces a deterministic finite-state machine (DFSM) #lccepts it. L*
interacts with aMinimally Adequate Teachghnenceforth referred to as tieacher
that answers two types of questions. The first type is a meshipgguery, in which
L* asks whether a string € ¥* is in U. The second type is@njecturgin which
L* asks whether a conjectured DFSMis such thatC (C) = U. If L (C) # U the
Teacher returns a counterexample, which is a stsingthe symmetric difference
of £ (C) andU.

At the implementation level, L* creates a table where it @mentally records
whether strings inC* belong toU. It does this by making membership queries
to the Teacher. At various stages L* decides to make a campclt constructs a
candidate automatari based on the information contained in the table and asks the
Teacher whether the conjecture is correct. If it is, the atgm terminates. Other-
wise, L* uses the counterexample returned by the Teachettéme the table with
strings that witness differences betwe@(C') andU .

10



2.4.1 Details of L*

In the following more detailed presentation of the algarthline numbers re-
fer to L*'s illustration in Fig. 3. L* builds the observatiotable (S, E,T') where

S and E are a set of prefixes and suffixes, respectively, both dVerln addi-
tion, 7' is a function mappindS U S - X)) - E to {true false}, where the oper-
ator “” is defined as follows. Given two sets of sequences of actidrend (),
P-Q={pq|pe Pandqg € Q}, wherepq represents the concatenation of the se-
qguence andg. Initially, L* sets S and £ to {A} (line 1), where\ represents
the empty string. Subsequently, it updates the funciidoy making membership
queries so that it has a mapping for every stringsnJ S - X) - F (line 2). It then
checks whether the observation tablelssed i.e., whether

Vs € S,Va € ¥,3s' € S,Ve € E: T(sae) = T(s'e)

If (S, E,T) is not closed, thera is added taS wheres € S anda € ¥ are the
elements for which there is ng € S (line 3). Oncesa has been added 18, 7'
needs to be updated (line 4). Lines 3 and 4 are repeated 6nfil, ') is closed.

Once the observation table is closed, a candidate DESM (Q, aC, §, qo, F') is
constructed (line 5), with staté€g = S, initial stateqg, = A, and alphabetC' = ¥,
whereY: is the alphabet of the unknown langudgeT he setF’ consists of the states

s € S such thatl'(s) = true. The transition relation is defined ag(s,a) = '
whereVe € E : T'(sae) = T'(s'e). Such ar’ is guaranteed to exist whés, £, T)

is closed. The DFSM is presented as a conjecture to the Teacher (line 6). If the
conjecture is correct,e., if £(C) = U, L* returnsC as correct (line 7), otherwise

it receives a counterexamptec >* from the Teacher.

The counterexampleis analyzed using a process described below to find a suffix
e of ¢ that witnesses a difference betwe€niC') andU (line 8). Suffixe must be
such that adding it t&Z will cause the next conjectured automaton to reflect this
difference. Once has been added tB, L* iterates the entire process by looping
around to line 2.

As stated previously, on line 8 L* must analyze the countaneglec to find a suffix

e of ¢ that witnesses a difference betwe@C') andU. This is done by finding the
earliest point in: at which the conjectured automaton and the automaton thativo
recognize the languagé diverge in behavior. This point found by determining
where(; # (11, where(; is computed as follows:

(1) Letp be the sequence of actions made up of the fiesttions inc. Let r be
the sequence made up of the actions after theifastions inc. Thus,c = pr.

(2) RunC on p. This movesC' into some statg. By construction, this state
corresponds to a row € S of the observation table.

(3) Perform a query on the actions sequence

(4) Return the result of the membership queryas

11



By using binary search, the point whefe # (;.; can be found inO (log |c|)
queries, wherér| is the length of-.

2.4.2 Characteristics of L*

L* is guaranteed to terminate with a minimal automatanfor the unknown lan-
guageU. Moreover, for each closed observation table £, 7'), the candidate
DFSM (' that L* constructs is smallest, in the sense that any othesNDEon-
sistent with the functionT” has at least as many states(asThis characteristic
of L* makes it particularly attractive for our framework. €ltonjectures made by
L* strictly increase in size; each conjecture is smallemtliae next one, and all
incorrect conjectures are smaller thah Therefore, ifM hasn states, L* makes
at most(n — 1) incorrect conjectures. The number of membership querieterng
L*is O (kn? + nlogm), wherek is the size of the alphabet 6f, n is the number
of states in the minimal DFSM fdr, andm is the length of the longest counterex-
ample returned when a conjecture is made.

3 Learning for Assume-Guarantee Reasoning

In this section we introduce a simple, asymmetric assunagagiee rule and we
describe a framework which uses L* to learn assumptionsateimate reasoning
about two components based on this rule. We also discussheftemework has
been extended to reason abewtomponents and to use circular rules.

3.1 Assume-Guarantee RUSYM

Our framework incorporates a number of symmetric and asymcneules for
assume-guarantee reasoning. The simplest assume-gepaobdf is for checking
a propertyP on a system with two component$, and A/, and is as follows [21]:

Rule ASym
1:(A) M, (P)
2. (true) M, (A)
(true) M, || My (P)

In this rule, A denotes an assumption about the environment in whichs placed.
Soundness of the rule follows froftrue) A, (A) implies(true) M, || M, (A) and

2 ADFSM C is consistent with functiofi” if, for everytin (SUS-X) - E,t € L(C) if
and only ifT'(t) = true.

12



Inputs: My, My, P, %

Teacher

return true

. 1 true ,
query: tracet !

al ; (t) My (P)
return false ‘ Talse
returnt | 3 : false and

- ; | counterexample

conjecture:A N

> Oracle 1:(A) M, (P) ‘
true

L*

true | Output:
‘ Oracle 2:(true) My (A) ’—L» (tl’Be} My || Ma (P) s true
false and 1 (assumptiorA)
counterexample

Counterexample
+ Analysis

| msaemy ey |
returnt | ¥ [ ] OthtpugzM M2 (P) is fa
T > (true 1 2 IS Talse
true fc%aﬁtgrr]gxample (counlerexample)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 4. Learning framework for rule ABv

from the definition of assume-guarantee triples. Compkserholds trivially, by
substitutingM, for A.

Note that the rule is not symmetric in its use of the two congris, and does
not support circularity. Despite its simplicity, our expmarce with applying com-
positional verification to several applications has shown be most useful in the
context of checking safety properties.

For the use of rule A8Mm to be justified, the assumption must be more abstract than
M, but still reflectM,’s behavior. Additionally, an appropriate assumption foe t
rule needs to be strong enough fdi to satisfyP in premise 1. Developing such an
assumption is difficult to do manually. In the following, westtribe a framework
that uses L* to learn assumptions automatically.

3.2 Learning Framework for RulaSym

To learn assumptions, L* needs to be supplied with a Teadmalde of answering
gueries and conjectures. We use the LTSA model checker tgearisoth of these
guestions. The learning framework for rule &8 is shown in Fig. 4. The alpha-
bet of the learned assumptionds = ;. As a result, the sequence of automata
conjectured by L* converges to the weakest assumptipn
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3.2.1 The Teacher

To explain how the teacher answers queries and conjecturasse/the following
lemma.

Lemma6 Lett € X*. Thent € L (A4,) if and only if (t) M, (P) holds. In the
assume-guarantee triple, we treaas its corresponding trace LTS with the alpha-
bet set ta:.

PROOF. By Theorem 1,(t) M; (P) holds if and only ifr is unreachable in
t || My || Perr, Which is equivalent to checkindtrue) M, || t (P). By Defini-
tion 2, this is the same as checkifigue) t (A,,), which is equivalent to checking
te L(A,). O

Answering Queries Recall that L* makes a query by asking whether a trace

is in the language being learned, whichdg$A,,). The Teacher must return true

if tisin L (A,) and false otherwise. To answer a query, the Teacher uses LTSA
to check(t) M, (P) (heret is treated as a trace LTS and its alphabetjsFrom
Lemma 6 it follows if this check is false, thenZ £ (A, ) and false is returned to

L*. Otherwise,t € £ (A,) and true is returned to L*.

Answering Conjectures A conjecture consists of an FSM that L* believes will
recognize the language being learned. The Teacher mush et if the conjec-
ture is correct. Otherwise, the Teacher must return falsesacounterexample that
witnesses an error in the conjectured FSM, a trace in the symmetric differ-
ence of the language being learned and that of the conjecautmaton. In our
framework, the conjectured FSM is an assumption that isgoesed to complete an
assume-guarantee proof. We treat the conjectured FSM as&yak described in
Section 2.2, which we denote as the LASTo answer the conjecture, the Teacher
uses two oracles:

e Oracle 1guides L* towards a conjecture that makes premise 1 of rule S
true. It checkg A) M, (P) and if the result is false, then a counterexampite
produced. Since thed) M, (P) is false, we know that[ > € £ (A). But, since
7 is reachable in [ X || M; || Per, by Lemma 6 we know that[ > & £ (A,).
Thus,t [ X witnesses a difference betwednand A,, so it is returned to L* to
answer the conjecture. If the triple is true, then the Teantwses on to Oracle 2.

e Oracle 2is invoked to check premise 2 of rule A8, i.e., to discharged on M,
by verifying that(true) M, (A) is true. This triple is checked and if it is true,
then the assumption makes both premises true and thus, sbmesgyuarantee
rule guarantees thdtrue) M, || M, (P) is true. The Teacher then returns true
and the computed assumptieh Note thatA is not necessarily,,, it can be
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strongerthan 4, i.e, £ (A) C L(A,), but the computed assumption is suffi-
cient to prove that the property holds. If the triple is nately then a counterex-
amplet is produced. In this case further analysis is needed tométerif either

P isindeed violated by, || M, orif A is not precise enough, in which cade
needs to be modified.

Counterexample analysis The counterexamplé from Oracle 2 must be ana-
lyzed to determine if it is a real counterexample,, if it causes)M; || M, to violate

P. To do this, the Teacher performs a querytdr:, in other words it uses LTSA
to check(t [ X) M, (P) (here agairt [ X is treated as a trace LTS and its alphabet
is X). If this triple is true, then by Lemma 6 we know thaty € £ (4,,). Since
this trace causedrue) M, (A) to be false, we also know that> ¢ £ (A), thus

t | ¥ witnesses a difference betwedrand A,,. Thereforef [ X is returned to L* to
answer its conjecture.

If the triple (¢ [ X) M, (P) is false, then the model checker returns a (new) coun-
terexample: that witnesses the violation @f on M; in the context of | . With

¥ = ¥, cis guaranteed to be a real error tracelify || M, || Per (we will see

in Section 5 that whex is only a subset ok, this is no longer the case). Thus,
(true) M, || M, (P) is false and: is returned to the user as a counterexample.

Remarks A characteristic of L* that makes it particularly attraaivfor our
framework is its monotonicity. This means that the interratglcandidate assump-
tions that are generated increase in size; each assumptsmnaller than the next
one. We should note, however, that there is no monotonititgeasemantic level.
If A; is the:™ assumption conjectured by L*, thed;| < |4;,,|, but it is not nec-
essarily the case th&t(A;) C L (A;11).

3.2.2 Example

Given componentkputandOutputshown in Fig. 1 and the proper@rder shown
in Fig. 2, we will check(true) Input || Output(Order) using rule AM. To do this,
we setM; = Input, M, = Output andP = Order. The alphabet of the interface for
this example i22 = ((alnputu aOrder) N aOutpuy = {send output ack}.

As described, at each iteration L* updates its observatadnbetand produces a
candidate assumption whenever the table becomes closedfirfh closed ta-
ble obtained is shown in Table 1 and its associated assumptig is shown in
Fig. 5. The Teacher answers conjectdreby first invoking Oracle 1, which checks
(A1) Input(Order). Oracle 1 returns false, with counterexampte (input, send,
ack, inpug, which describes a trace i, || Input || Order,, that leads to state.
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Table 1 Table 2
MappingT; MappingTs

E1 E2

T A TS A ack

S1 A true A true true
output false So output false false

ack true send true false
output false ack true true
S1-X¥ | send true output false false
output, ack false send true false
output, output| false output, ack false false
output, send | false S2 - 3 | output, output| false false
output, send | false false
send, ack false false

send, output | true true

send, send true true

send

OO NO®

output
send

send

send output

Fig. 9. LTS forOutput

ack

The Teacher therefore returns counterexampl® = (send, ack to L*, which
uses queries to again update its observation table unsldtased. From this ta-
ble, shown in Table 2, the assumptien, shown in Fig. 6, is constructed and
conjectured to the Teacher. This time, Oracle 1 reports tAat Input (Order) is
true, meaning the assumption is not too weak. The Teacherddlés Oracle 2 to
determine if(true) Output(A,). This is also true, so the framework reports that
(true) Input || Output(Order) is true.

This example did not involve weakening of the assumptiondipced by L*, since
the assumptioni, was sufficient for the compositional proof. This will not alys
be the case. Considé&utput, shown in Fig. 9, which allows multiple send ac-
tions to occur before producing output.@utputwere replaced byutput, then
the verification process would be identical to the previoaseg until Oracle 2 is
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invoked by the Teacher for conjectusg. Oracle 2 returns thatrue) Output (A,)

is false, with counterexampleend, send, outputThe Teacher analyzes this coun-
terexample and determines that in the context of this tragmyt does not vio-
late Order. This trace (projected ontd) is returned to L*, which will weaken the
conjectured assumption. The process involves two moratiters, during which
assumptionsd; (Fig. 7) andA, (Fig. 8), are produced. Using,, which is the
weakest assumptiod,,, both Oracles report true, so it can be concluded that
(true) Input || Output (Order) also holds.

3.2.3 Correctness and Termination

Theorem 7 Given componentd/; and M,, and propertyP, the algorithm im-
plemented by our framework for ruleSym terminates and correctly reports on
whether(true) M, || M, (P) holds.

PROOF. To prove the theorem, we first argue the correctness, andtitiesiermi-
nation of our algorithm.

Correctness: The Teacher in our framework uses the two geshaf the assume-
guarantee rule to answer conjectures. It only reports {tvae) A, || M, (P) is
true when both premises are true, and therefore correctaagpsaranteed by the
compositional rule. Our framework reports an error wheretetts a trace of M,
which, when simulated on/;, violates the property, which implies that; || M,
violatesP.

Termination: At any iteration, after an assumption is cohjesd, our algorithm re-
ports on whethettrue) M, || M, (P) is true and terminates, or continues by pro-
viding a counterexample to L*. By correctness of L*, we arengunteed that if it
keeps receiving counterexamples to conjectures, it witihéwally, at some itera-
tion ¢, produceA,,. During this iteration, Oracle 1 will return true by defimti of
A,. The Teacher will therefore apply Oracle 2, which will retuither true and
terminate, or will return a counterexample. This countaraple represents a trace
of M, that is not contained if(A,). Since, as discussed beforg, is both nec-
essary and sufficient, analysis of the counterexample eflort that this is a real
counterexample, and the algorithm will terminate-]

3.3 Generalization ta Components

We presented our approach so far to the case of two comporesisme now that a
system consists of > 2 components. To check if systewf, || M, || - -- || M, sat-
isfies P, we decompose it intal/; and M} = M, || Ms || - - - || M,, and the learn-
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ing framework is applied recursively to check the secondrnise of the assume-
guarantee rule.

At each recursive invocation fovl; andM; = M, || Mjy, || -« || M,, we solve
the following problem: find assumptiofy; such that the following are both true:

* (4;) M; (A;)and

o (true) Mjiy || Mjpo || -+ || M (Ay).

Here A,_, is the assumption fof/;_, and plays the role of the property for the
current recursive call. Correctness and termination feg #xtension follows by
induction onn from Theorem 7.

3.4 Extension with a Circular Rule

Our framework can accommodate a variety of assume-guarantes that are
sound. Completeness of rules is required to guaranteertation. \We investigate
here another rule, that is similar to A8 but it involves some form of circular rea-
soning. This rule appeared originally in [21] (for reasapabout two components).
The rule can be extended easily to reasoning aboxut2 components.

Rule CIRC-N
(A1) My (P)
(Az) My (Ay)

N =

ne (A M, (A, )
n+1: (true) M, (A,)
(true) M, || My || --- || M, (P)

Soundness and completeness of this rule follow from [21}teNbat this rule is

similar to the rule ASwm applied recursively fom + 1 components, where the
first and the last component coincide (hence the term “créulLearning based

assume-guarantee reasoning proceeds as described ionS28ti

4 Learning with Symmetric Rules

Although sound and complete, the rules presented in thaquesection are not
always satisfactory since they are not symmetric in the dsthe components.
In [6] we proposed a set of symmetric rules that are sound antptete and we
also described their automation using learning. They am@sgtric in the sense that
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they are based on establishing and discharging assumjtioeach component at
the same time.

4.1 Symmetric Assume-Guarantee Rules

Here we present one of the rules that we found particulafcéfe in practice. The
rule may be used for reasoning about a system composed>of2 components:
My || My || -+ || My

Rule Sym-N

n: (A,) M, (P)
n+1:L(coA; || coAs || - || coA,) C L(P)
(trug) M, [| My || - - [| M, (P)

We requireaP C aM; UaM, U ---UaM, and that fori € {1,2,...n}
ad; C (aMynaMyn---NabM,)UaP.

Informally, eachA; is a postulated environment assumption for the compomhgnt
to achieve to satisfy property. Recall thatoA; is the complement ofi;.

Theorem 8 RuleSym-N is sound and complete.

PROOF. To establish soundness, we show that the premises togettiethe
negated conclusion lead to a contradiction. Consider & trior which the conclu-
sion fails,i.e, t is a trace ofM; || M, || - -- || M, that violates property?, in other
wordst is not accepted by’. By the definition of parallel composition] oM is
accepted by/,. Hence, by premise 1, the tratea A; can not be accepted by,
i.e, t[aA; is accepted byoA;. Similarly, by premise = 2...n, the trace [ ¢ 4;
is accepted byoA;. By the definition of parallel composition and the fact that a
FSM and its complement have the same alphabétyA; U A, U ---U A,,) is ac-
cepted byoA; || coAs || --- || coA, and it violatesP. But premise: + 1 states that
the common traces in the complements of the assumptionadp&ahe language
of P. Hence we have a contradiction.

Our argument for the completeness of RuleMSN relies on weakest assump-
tions. To establish completeness, we assume the conclokibe rule and show
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true

1 Output:

true
£ (coAs || cos |-~ || coAn) C £ (Pf————————T—=(true) My | Ma || --- || My (P)
false i is true
1 ; Output:
3 } Counterexample Analy;i% 3 (true) My || Ma || -+ || M, (P)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, J is false

Fig. 10. Learning framework for rule¥31-N

that we can construct assumptions that will satisfy the esof the rule. We
construct the weakest assumptiots,, A9, ... Ay, for My, M, ... M, respec-
tively, to achieveP and substitute them fad,, A,,... A,. Premised throughn
are satisfied. It remains to show that premise 1 holds. Again we proceed by
contradiction. Suppose there is a trade £ (coAy; || codys || - - - || coAu,) that
violates P; more preciselyt [aP € L (coP). By definition of parallel composi-
tion, ¢ is accepted by altoA,, coA,.,...coA,,. Furthermore, there will exist
t1 € L (M, || coP) such that, [at = t, whereat is the alphabet of the assump-
tions. Similarly fori = 2...n, t;, € L(M; || coP). ty, ta,...t, can be combined
into tracet’ of My || M, || --- || M, such thatt' [t = t. This contradicts the
assumed conclusion that; || M, || --- || M, satisfiesP, sincet violates P.
Therefore, there can not be such a common ttaeed premise: + 1 holds. O

4.2 Learning Framework for Rul8ym-N

The framework for rule 8m-N is illustrated in Fig. 10. To obtain appropriate as-
sumptions, the framework applies the compositional rukennterative fashion. At
each iteration L* is used to generate appropriate assumgpfar each component,
based on querying the system and on the results of the peiteration. Each as-
sumption is then checked to establish the premises of Rule-8. We use separate
instances of L* to iteratively leard,,;, A2, ... Ayn-

4.2.1 The Teacher

As before, we use model checking to implement the Teachatetkby L*. The
conjectures returned by L* are the intermediate assumgtion A,, ...A,. The
Teacher implements + 1 oracles, one for each premise in then&N rule:

e Oraclesl, 2, ...n guide the corresponding L* instances towards conjectunas t
make the corresponding premise of ruleN&N true. Once this is accomplished,
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e Oraclen + 1 is invoked to check the last premise of the rule,
L (coAq || coAsy || -+ || coAn) C L(P)
If this is true, rule SM-N guarantees that/; || M, || --- || M, satisfiesP.

If the result ofOraclen + 1 is false (with counterexample tra¢g by counterex-
ample analysis we identify either th&tis indeed violated i/, || M, || - - || M,
or that some of the candidate assumptions need to be modifisdme of the) as-
sumptions need to be refined in the next iteration, then hetsamust be added to
those assumptions. The result will be that at least the hehtnat the counterex-
ample represents will be allowed by those assumptions guhe next iteration.
The new assumptions may of course be too abstract, and ahetbie entire pro-
cess must be repeated.

Counterexample analysis Counterexample is analyzed in a way similar to the
analysis for rule ASwm, i.e., we analyzet to determine whether it indeed corre-
sponds to a violation id/; || M || --- || M,. This is checked by simulatingon
M; || coP, foralli = 1...n. The following cases arise:

e If ¢ is a violating trace of all components\;, Ms,...M,, then
M, || My || - -+ || M, indeed violates”, which is reported to the user.

e If ¢is not a violating trace of at least one compong&ht then we use to weaken
the corresponding assumption(s).

4.2.2 Correctness and Termination

Theorem 9 Given componentd/,, M,, ... M, and propertyP, the algorithm im-
plemented by our framework for rulgvm-N terminates and correctly reports on
whetherP holds onM, || M || - - || M,.

PROOF. Correctness: The Teacher returns true only if the premitrg@®Sy M -N
hold, and therefore correctness is guaranteed by the sesadsf the rule. The
Teacher reports a counterexample only when it finds a tresteiglviolating in all
components, which implies that, || M, || - -- || M, also violatesP.

Termination: At any iteration, the Teacher reports on wkettr not P holds on

M || My || --- || M, and terminates, or continues by providing a counterexam-
ple to L*. By the correctness of L*, we are guaranteed that Kdeps receiving
counterexamples, it eventually produces;, Ao, . . . A, respectively.

During this last iteration, premisaghroughn will hold by definition of the weak-
est assumptions. The Teacher therefore checks premise which either returns
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client;.request client;.grant

9 client;.useResource i .
client.grant client.grant

client;.cancel client.cancerl client;.cance

Fig. 11. Example LTS for a Fig. 12. Mutual exclusion
client property

client.reques

client,.grant client,.deny

e’ client.cancel

client.reque client.deny

client..cance
client.cance

client.reques

Fig. 13. Example LTS for a server

true and terminates, or returns a counterexample. Sincevéfa&est assumptions
are used, by the completeness of the rule, we know that th@e@xample analy-
sis reveals a real error, and hence the process terminates.

5 Learning with Alphabet Refinement

In this section, we present a technique that extends theitepbased assume-
guarantee reasoning framework with alphabet refinementfikkillustrate the
benefits of smaller interface alphabets for assume-gusgartasoning through a
simple client-server example from [30]. Then, we explaia éffect of smaller in-
terface alphabets on learning assumptions. We then desitrébalphabet refine-
ment algorithm, give its properties, and discuss how it ea$eto reasoning about
n components as well as to circular and symmetric rules.

5.1 Example

Consider a system consisting osarvercomponent and two identicalient com-
ponents that communicate through shared actions. Eaaft sksmdsequestsor
reservations to use a common resource, waits for the semgnant the reserva-
tion, uses the resource, and ttencelshe reservation. For example, the LTS of a
clientis shownin Fig. 11, where= 1, 2. The server, shown in Fig. 13 cgnantor
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request client.cancel
rant client.cancel
Client Z S client.grant . clienty.grant
lents eny erver e G 0
cancel clienf.grant clienf.grant
client.cancel clieny.cancel
client.cancel client.cancel
. . Fig. 15. Assumption learned
Fig. 14. Complete interface for g P
. with an alphabet smaller than
the client-server example :
the complete interface alphabet

client,.cancel

client,.deny

clienty.request

client.requesi

clieny.cancel client.cancel
client.deny  client.deny
client.grant  client.grant
clienty.request

clieny.deny client.cancel
clien.grant client.request
clienty.request

clienty.reques
client.cance
client,.den
client.grant

clienty.cancel

client.request e
client.cancel
ue

clientyreques client.req client;.deny
client.request client.grant

client.cancel
clienty.reques

clieny.deny
clieny.gran
clientz.canc b _ _
client,.deny cl!entl.cancel cl!entzcancel client.deny [jient, cancel
client.grant client.deny  client.deny e
clieny.grant  client.request ) client.request
client.cancel client.deny
clien.cancel client.deny client.grant

clienty.deny client.grant client.request

client.request

clien.grant

Fig. 16. Assumption obtained with the complete interfaqiabet

denya request, ensuring that the resource is used only by ond elie time. We
are interested in checking the mutual exclusion propeltgtitated in Fig. 12, that
captures a desired behavior of the client-server apptinati

To check the property compositionally, assume that we deosa the sys-
tem as: M; = Client, || Client, and M, = Server The complete alphabet of
the interface betweed/; | P and M, (see Fig. 14) is>; = {client.cancel,
client.grant, clientdeny, clientrequest, clientcancel, clientgrant, clienfdeny,
client.reques.

Using this alphabet and the learning framework in SectioarBassumption with
eight states is learned, shown in Fig. 16. However, a (muctallsr assumption
is sufficient for proving the mutual exclusion property. Wihe assumption alpha-
betY. = {client.cancel, clientgrant, cliemicancel, clientgrant, which is a strict
subset of; (and, in fact, the alphabet of the property), a three-stasei@ption
is learned, shown in Fig. 15. This smaller assumption esabiare efficient verifi-
cation than the eight state assumption obtained with thepteimalphabet. In the
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following section, we present an extension of the learnmagnework that infers
automatically smaller interface alphabets (and the cpoeding assumptions).

5.2 Learning Based Assume-Guarantee Reasoning and Siteafblce Alphabets

Before describing the alphabet refinement algorithm, Idirasconsider the effect

of smaller interface alphabets on our learning framewog./; and A/, be com-
ponents,P be a propertyy:; be the interface alphabet, ahdbe an alphabet such
thatY C X;. Suppose that we use the learning framework of Section 3 butow

set this smalle® to be the alphabet that the framework uses when learning the
assumption. From the correctness of the assume-guaranégef the framework
reports true{true) M, || M, (P). When it reports false, it is because it finds a trace
tin M, that falsifies(t [ ) M; (P). This, however, does not necessarily mean that
M || M, violatesP. Real violations are discovered by our original framewarnkyo
when the alphabet iS;, and are traces of M, that falsify (¢' [ ¥;) M; (P). Inthe
assume-guarantee tripleg,> andt’ [ X; are trace LTSs with alphabeisandy;,
respectively.

Consider again the client-server example. Asstie{ client.cancel, clientgrant,
client.grang, which is a strict subset of,;. Learning withY produces trace: =
(client.request, clientgrant, client.cancel, clientrequest, clientgrant. Projected
to X, this becomes [ £ = (client.grant client.grant. In the context of [ X, M,
violates the property sind@lient, || Client, || Per contains the following behavior.

(07 07 0) cliernlﬁ)quest(17 07 0) cIier1t2£;quest(17 17 0)

client,.grant (1’ 2’ 2) client;.grant (2’ 2’ 7T)

Learning therefore reports false. This behavior is not itdas however, in the
context oft[X; = (client.request, clientgrant, clienicancel, clientrequest,
client.granp. This trace requires a clie;tancel action to occur before the
client.grant action. Thus, in the context Bf the above violating behavior would
be infeasible. We conclude that when applying the learmagéwork with alpha-
bets smaller thax;, if true is reported then the property holds in the system, bu
violations reported may be spurious.

5.3 Algorithm for Alphabet Refinement

Alphabet refinemengxtends the learning framework to deal with alphabets that
are smaller thart; while avoiding spurious counterexamples. The steps of the
algorithm are as follows (see Fig. 17):
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l Initialize ©

couraterexamples
>l Learning "i, Output: (¢rue) My || Mo (P) candt
Framework O I
false and 3 false !
co;nr:jtt?rexamples | LTSA: (t | 1) My (P) |——> cisreal
c L ' '
true
Extended | fea ‘
xtende real . ' iner:
Counterexample——> Output.(true)‘l\/h || Ma (P) 1 Freg;e;h%%np a[re
Analysis is false -
: actions to
¢ is spurious 1 add tox
updateX and
restart learning . )
framework ¢ IS spurious
Fig. 17. Learning with alphabet Fig. 18. Extended counterexample
refinement analysis

(1) Initialize X such that: C X;.

(2) Use the classic learning framework for If the framework returns true, then
report true and STOP. If the framework returns false withrtetexamples
andt, go to the next step.

(3) Performextended counterexample analysigith ¢ andt. If ¢ is a real coun-
terexample, then report false and STOR: i spurious, themefine X, which
consists of adding actions tofrom X;. Go to step 2.

When spurious counterexamples are detected, the Refirerdscthe alphabet with
actions from the alphabet of the weakest assumption ance#traihg of assump-
tions is restarted. In the worst case; is reached and, as proven in our previous
work, learning then only reports real counterexamples.Aighlighted steps in the
above high-level algorithm are further specified next.

Alphabet initialization The correctness of our algorithm is insensitive to theahiti
alphabet. We set the initial alphabet to those actions ilipieabet of the property
that are also irt;, i.e., P N ;. The intuition is that these interface actions are
likely to be significant in proving the property, since theg avolved in its defini-
tion. A good initial guess of the alphabet may achieve bigregssin terms of time
since it results in fewer refinement iterations.

Extended counterexample analysig\n additional counterexample analysis is ap-
pended to the original learning framework as illustratedrig. 17. The steps of
this analysis are outlined in Fig. 18. The extension takeg@sts both the coun-
terexamplée returned by Oracle 2, and the counterexamytleat is returned by the
original counterexample analysis. We modified the “cldskarning framework
(Fig. 4) to return both: and ¢ to be used in alphabet refinement (as explained be-
low). As discussed; is obtained becausg [X) M; (P) does not hold. The next
step is to check whether in fatuncovers a real violation in the system. As illus-
trated by the client-server example, the results of cherkin || Py in the context
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of t projected to different alphabets may be different. The exir(non-spurious)
results are obtained by projectingn the alphabet’; of the weakest assumption.
Counterexample analysis therefore calls LTSA to ch@dke;) M, (P). If LTSA
finds an error, the resulting counterexamplis real. If error is not reached, then
the counterexample is spurious and the alphabet¢eds to be refined. Refinement
proceeds as described next.

Alphabet refinement When spurious counterexamples are detected, we need to
augment the current alphabetso that these counterexamples are eventually elim-
inated. A counterexampleis spurious if in the context of [ ¥; it would not be
obtained. Our refinement heuristics are therefore basedmparinge andz [ X,

to discover actions if; to be added to the learning alphabet (for this reasmn

also projected orx; in the refinement process). We have currently implemented
the following heuristics:

AlIDiff: adds all the actions in the symmetric differencet¢ot; andc ;. A
potential problem of this heuristic is that it may add too maations too soon. If
it happens to add useful actions, however, it may terminfée a small number
of iterations.

Forward: scans the traces >; andc | Y; in parallel from beginning to end look-
ing for the first index; where they disagree; if such ans found, both actions
t13;(4), c] X, (i) are added to the alphabet. By adding fewer actions during eac
iteration, the algorithm may end up with a smaller alphaBeit, it may take
more iterations before it does not produce a spurious result

Backward: is similar to Forward, but scans from the end of the trace$¢obie-
ginning.

5.3.1 Correctness and Termination

For correctness and termination of learning with alphaéf#hement, we first show
progress of refinement, meaning that at each refinement, stageactions are dis-
covered to be added to.

Proposition 10 (Progress of alphabet refinement)Lety; = (aM;UaP)NaM,

be the alphabet of the weakest assumption and let>:; be that of the assumption
at the current alphabet refinement stage. 1le¢ a trace of\/, || Ae such that |2
leads to error onM; || Peyr by an error tracec, butt [¥; does not lead to error
on M; || Per.- Thent[Y; # c¢[X; and there exists an action in their symmetric
difference that is not ifx.

PROOF. We prove by contradiction that/ >; # ¢[Y;. Supposée [Y; = ¢[Y;.
We know thatc is an error trace o/, || Per. Since actions of that are not in:;
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are internal taV/; || Perr, thenc [ Y, also leads to error o/, || Pey. But thent [ X,
leads to error or/; || Perr, Which is a contradiction.

We now show that there exists an action in the symmetricrdiffee between|>;
andc [ X; that is not inX (this action will be added t& by alphabet refinement).
Tracet [ X, is t[ X, with some interleaved actions froby; \ . Similarly, ¢ [ %,
is t [ ¥ with some interleaved actions frol; \ ¥, sincec is obtained by com-
posing the trace LTS [ Y with M, || Pey. Thust[YX = ¢[X. We again proceed
by contradiction. If all the actions in the symmetric difface between|>:; and
c] X7 were inX, we would have [¥X; =t X = ¢[X = ¢[X;, which contradicts
tI8r#clX;. O

Correctness follows from the assume-guarantee rule anextemded counterex-
ample analysis. Termination follows from termination oétbriginal framework,
from the progress property and also from the finiteness,ofMoreover, from the
progress property it follows that the refinement algorittontivo components has
at most|X;| iterations.

Theorem 11 Given componentd/,; and M., and propertyP, L* with alphabet
refinement terminates and returns truéff || M, satisfiesP and false otherwise.

PROOF. Correctness: When the teacher returns true, then corgsiagguaran-
teed by the assume-guarantee compositional rule. If thehé&eaeturns false, the
extended counterexample analysis reports an error forca traf M,, such that

t [ 3 in the context ofd/; violates the property (the same test is used in the algo-
rithm from [15]) hencel, || M, violates the property.

Termination: From the correctness of L*, we know that at emfinement stage
(with alphabet), if L* keeps receiving counterexamples, it is guaranteeden-
erate A, ». At that point, Oracle 1 will return true (from Lemma 5). Tleéore,
Oracle 2 will be applied, which will return either true, aretrninate, or a coun-
terexample. This counterexample is a trace that is notfifA,, ».). It is either a
real counterexample (in which case the algorithm terms)ateit is a trace such
that¢ [ ¥ leads to error onV/; || Pe, by an error trace:, butt[>; does not lead
to error onM, || Pey. Then from Proposition 10, we know thatY; # ¢ [¥; and
there exists an action in their symmetric difference thaoisin . The Refiner will
add this action (and possibly more actions, depending onmetireement strategy)
to X and the learning algorithm is repeated for this new alphakiatey:; is finite,
in the worst casey. grows intoY:;, for which termination and correctness follow
from Theorem 7. O
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We also note a property of weakest assumptions, which staaedy adding ac-
tions to an alphabet’, the corresponding weakest assumption becowesker
(i.e., contains more behaviors) than the previous one.

Proposition 12 Assume componentg; and M,, property P and the correspond-
ing interface alphabek;. Let Y, >’ be sets of actions such that: ¢ ¥' c ;.
Then:[, (A'w,Z) g L (A'w,Z’) g L (AUJ,Z[)-

PROOF. Since¥ C %', we know that4, s [Y = A,ys. By substituting,
in Definition 2, A, », for M,, we obtain that:(A, s) M, (P) if and only if
(true) A, 5 (A, sv). From Lemma 5 we know thatA, ».) M, (P). Therefore,
(true) A, x (A, ) holds, which implies that (4,y) C L (A, ). Similarly,
L(Ayy) CL(Ayy,). O

With alphabet refinement, our framework adds actions to lipfeadet, which trans-
lates into adding more behaviors to the weakest assumgtairit tries to learn.
This means that at each refinement stagehen the learning framework is started
with a new alphabeX; such that:; ; C ¥, it will try to learn a weaker assump-
tion A, y, than A, »,, |, which was its goal in the previous stage. Moreover, all
these assumptions aneder-approximationsf the weakest assumptioh, y;, that

is necessary and sufficient to prove the desired propertie M@t at each refine-
ment stage the learning framework might stop before compguhe corresponding
weakest assumption. The above property allows reuse aifitearesults across
refinement stages (see Section 8).

5.4 Generalization te Components

Alphabet refinement can also be used when reasoning aboué ri@n
two components using rule $vm. Recall from Section 3 that to check
if system M, || M, || --- || M, satisfies P we decompose it into:\/; and
M) = M, || Ms || --- || M, and the learning algorithm (without refinement) is in-
voked recursively for checking the second premise of tharassguarantee rule.

Learning with alphabet refinement follows this recursioheAch recursive invoca-
tion for M; and M} = M; ., || Mj,o || -+ - || M,, we solve the following problem:
find assumptiond; and alphabekt 4, such that the rule premises hoigb.

Oracle 1:(A;) M; (A;_;) and

Oracle 2:(true) M,y || Myss || -+ || My (A;).

28



Here A;_, is the assumption fod/;_; and plays the role of the property for the
current recursive call. Thus, the alphabet of the weakestraption for this re-
cursive invocation i) = (aM; UaA; 1) N (aMjp UaMioU---Uabl,). If
Oracle 2 returns a counterexample, then the counterexaamallysis and alpha-
bet refinement proceed exactly as in the two-component d&ste. that at a new
recursive call ford/; with a newA;_,, the alphabet of the weakest assumption is
recomputed.

Correctness and termination of this extension follow frohe@rem 11 (and from
finiteness ofx). The proof proceeds by induction an

5.5 Extension to Circular and Symmetric Rules

Alphabet refinement also applies to the rule €N and S'm-N. As mentioned,
CIRC-N is a special case of the recursive application of ruler&Sor n+1 compo-
nents, where the first and last component coincide. Thexeflphabet refinement
applies to GRC-N as we described here.

For rule Srm-N, the counterexample analysis for the error traadbtained from
checking premise. + 1 is extended for each component, fori = 1...n. The
extension works similarly to that for A8x discussed earlier in this section. The
error tracef is simulated on each/; || coP with the current assumption alphabet.

e If ¢ is violating for some, then we check whether with the entire alphabet of
the weakest assumption fors still violating. If it is, thent is a real error trace
for M;. If it is not, the alphabet of the current assumption fas refined with
actions from the alphabet of the corresponding weakeshgsison.

e If ¢ is a real error trace for all, then it is reported as a real violation of the
property on the entire system.

If alphabet refinement takes place for soin¢he learning of the assumption for
this; is restarted with the refined alphabet, and premise 1 is re-checked with
the new learned assumption for

6 Experiments

We implemented learning with rules A&, Sym-N, CIRC-N, with and without al-

phabet refinement in LTSA and evaluated the implementatmnshecking safety
properties of various concurrent systems that we briefleides below. The goal
of the evaluation was to assess the performance of learthiegeffect of alpha-
bet refinement on learning, to compare the effect of the mifferules, and to also
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compare the scalability of compositional verification bgri@ng to that of non-
compositional verification.

Models and properties We used the following LTSA model$sas Station22]
models a self-serve gas station consisting @lustomers, two pumps, and an op-
erator. Fork = 3,4,5, we checked that the operator correctly gives change to a
customer for the pump that he/she usétiron [25,5] models a graphical user in-
terface consisting of artists, a wrapper, a manager, a client initialization megdu
a dispatcher, and two event dispatchers. Fet 2. ..5, we checked two proper-
ties: the dispatcher notifies artists of an event beforeivagea next event, and
the dispatcher only notifies artists of an event after itisexethat eventMER[30]
models the flight software component for JPL's Mars ExpioraRovers. It con-
tainsk users competing for resources managed by an arbiterk Fer2 ... 6, we
checked that communication and driving cannot happen asdhee time as they
share common resourcdlover Executivgl5] models a subsystem of the Ames
K9 Rover. The models consists of a main ‘Executive’ and ared@ondChecker’
component responsible for monitoring state conditions ctecked that for a spe-
cific shared variable, if the Executive reads its value, ttirenExecCondChecker
should not read it before the Executive clears it.

Gas Station and Chiron were analyzed before, in [14], use®yning-based
assume-guarantee reasoning (withyASand no alphabet refinement). Four prop-
erties of Gas Station and nine properties of Chiron were ldd¢o study how
various 2-way model decompositionse(, grouping the modules of each analyzed
system into two “super-components”) affect the perforneapiclearning. For most
of these properties, learning performs better than nonpamitional verification
and produces small (one-state) assumptions. For some tbeerties, learning
does not perform that well, and produces much larger assangtTo stress-test
our implementation, we selected some of the latter, morbestging properties for
our studies here.

ResultsWe performed several sets of experiments. All experimeetewerformed
on a Dell PC with a 2.8 GHz Intel Pentium 4 CPU and 1.0 GB RAMning
Linux Fedora Core 4 and using Sun’s Java SDK version 1.5. &halts are shown
in Tables 3, 4, 5, and 6. In the tabled, is themaximumassumption size reached
during learning, ‘Mem.’ is thenaximunmemory used by LTSA to check assume-
guarantee triples, measured in MB, and ‘Time’ is the totaUGénning time, mea-
sured in seconds. Column ‘Monolithic’ reports the memorg am-time of non-
compositional model checking. We set a limit of 30 minuteassiach run. The sign
‘~” indicates that the limit of 1:GB of memory or the time linhias been exceeded.
For these cases, the data is reported as it was when the laniteached.

In Table 3, we show the performance of learning with thevASrule, without al-
phabet refinement, and with different alphabet refinemeuatiscs, for two-way
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Table 3
Comparison of learning for 2-way decompositions with¥A§ with and without alphabet
refinement.

Case k No refinement Refinement + bwd Refinement + fwd Refinement + allDiff
[AT | Mem. T Time [AT ] Mem. T Time [AT ] Mem. T Time [AT ] Mem. T Time

Gas Station 3 177 4.34 - 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76

4 195 100.21 - 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72

5 53 263.38 — 8 248.17 183.70 20 414.19 — 18 360.04 530.71
Chiron, 2 9 1.30 1.23 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Property 1 3 21 5.70 5.71 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 39 27.10 28.00 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32

5 111 569.24 607.72 110 — 300 110 — 300 110 — 300
Chiron, 2 9 1.14 157 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Property 2 3 25 4.45 6.39 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 45 25.49 32.18 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67

5 122 131.49 246.84 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99
MER 2 40 6.57 7.84 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01

3 377 158.97 - 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85

4 38 391.24 - 10 514.41 | 119353 10 514.41 | 1225.95 10 514.41 | 1226.80

[ RoverExec. [ 2 [ 11 | 265 | 182 [ 4 [ 287 | 253 [ 11 [ 267 [ 417 [ 11 [ 254 [ 288 |

decompositions of the systems we studied. For Gas StatidrChiron we used
decompositions generalized from the best two-way decoitipos at size 2, as
described in [14]. For Gas Station, the operator and theffursip are one compo-
nent, and the rest of the modules are the other. For Chirenetent dispatchers
are one component, and the rest of the modules are the othheMER, half of the
users are in one component, and the other half with the arhitae other. For the
Rover we used the two components described in [15]. As thesadts indicate that
‘bwd’ heuristic is slightly better than the others, we usleid heuristic for alphabet
refinement in the rest of the experiments.

Table 4 shows the performance of the recursive implememtaif learning with
rule ASym, with and without alphabet refinement, as well as that of nlitmo
(non-compositional) verification, for increasing numbécomponents. For these
experiments we used an additional heuristic to computerheringof the modules
in the sequenceé/,, ... M, for the recursive learning, to minimize the sizes of the
interface alphabets!, ... ¥". We generated offline all possible orders with their
associated interface alphabets and then chose the ordemthianizes the sum
i_1 |1X7]. Automatic generation of orderings was not always possibleause of
the combinatorial explosion. In some cases with large patam, we lifted the
results obtained for small values of the parameter on theesaodel to the model
with the larger parameter.

We also compared learning with and without alphabet refimerioe rules Sm-N

and QRc-N under the same conditions as in the previous experimenesrddults
are in Tables 5 and 6.

DiscussionThe results overall show that rulesk™m is more effective than the other
rules and that alphabet refinement improves learning segmfiy.

Tables 5 and 6 indicate that generally rules/SN and GQrRc-N do not improve the
performance of learning or the effect of alphabet refinembeut they can some-
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Table 4
Comparison of recursive learning forskm rule with and without alphabet refinement, and
maonolithic verification.

Case i ASYM ASYM + ref Monolithic
T4 | Mem. | Time | [A] | Mem. [ Time | Mem. | Time
Gas Station| 3 | 473 | 109.97| - 25 | 241 | 13.29| 1.41 | 0.034
4| 287 | 203.05| - 25 | 3.42 | 2250 2.29 | 0.13
51| 268 | 283.18| - 25 | 534 | 46.90| 6.33 | 0.78
Chiron, 2| 352| 343.62| - 4 0.93 | 2.38 | 0.88 | 0.041
Property 1 | 3 | 182 | 11457, - 4 1.18 | 2.77 | 1.53 | 0.062
4| 182 | 116.66| - 4 213 | 3.53 | 2.75 | 0.147
51182 | 115.07| - 4 7.82 | 6.56 | 13.39| 1.202
Chiron, 2| 190 | 107.45 — 11 | 1.68 | 40.11| 1.21 | 0.035
Property 2 | 3 | 245 | 68.15 - 114 | 28 - 1.63 | 0.072
4 | 245 | 70.26 - 103 | 23.81 - 2.89 | 0.173
51 245| 76.10 — 76 | 32.03 - 15.70| 1.53
MER 2| 40 8.65 | 21.90| 6 1.23 | 1.60 | 1.04 | 0.024
3| 501 | 240.06| - 8 3.54 | 476 | 405 | 0.111
4| 273 | 10159, - 10 | 9.61 | 13.68| 14.29| 1.46
51 200| 78.10 - 12 | 19.03| 35.23| 14.24| 27.73
6 | 162 | 84.95 - 14 | 47.09 | 91.82 - 600

times handle cases which were challenging foryAS as is the case of¥841-N for
Chiron, property 2. Thus there is some benefit in using alhete rules.

Table 3 shows that alphabet refinement improved the assomgiie in all cases,
and in a few, up to almost two orders of magnitude (see GasoSBtatth &k =
3,4, Chiron, Property 2, withk = 5, MER with £ = 3). It improved memory
consumption in 10 out of 15 cases, and also improved runnimg, tas for Gas
Station and for MER witlt = 3, 4 learning without refinement did not finish within
the time limit, whereas with refinement it did. The benefit lphabet refinement is
even more obvious in Table 4 where ‘No refinement’ exceededinhe limit in all
but one case, whereas refinement completed in almost all ,gaselucing smaller
assumptions, and using less memory in all the cases, up torthens of magnitude
less in a few.

Table 4 indicates that learning with refinement scales bétan without refine-
ment for increasing number of components./Agcreases, the memory and time
consumption for ‘Refinement’ grows slower than that of ‘Métioc’. For Gas Sta-
tion, Chiron (Property 1), and MER, for small valuesiofRefinement’ consumes
more memory than ‘Monolithic’, but ak increases the gap is narrowing, and for
the largestt ‘Refinement’ becomes better than ‘Monolithic’. This leadscases
such as MER withk = 6 where, for a large enough parameter value, ‘Monolithic’
runs out of memory, whereas ‘Refinement’ succeeds.
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Table 5
Comparison of learning for®v-N rule with and without alphabet refinement.

Case i SYM-N SYM-N + ref
T4 | Mem. | Time [ [A] [ Mem.| Time
Gas Station| 3 | 7 1.34 - 83 | 31.94 | 874.39
4| 7 2.05 - 139 | 38.98 -
5| 7 2.77 - 157 | 52.10 -
Chiron, 2| 19 | 221 - 21 | 456 | 52.14
Property1 | 3| 19 | 2.65 - 21 | 499 | 65.50
4| 19 | 4.70 - 21 | 6.74 | 70.40
5| 19 | 17.65 - 21 | 28.38| 249.3
Chiron, 2| 7 1.16 - 8 0.93 6.35
Property2 | 3| 7 1.36 - 16 | 1.43 9.40
4| 7 2.29 - 32 | 3.51 | 16.00
5| 7 8.20 - 64 | 20.90| 57.94
MER 2] 40 | 656 ] 900 | 6 | 1.60 | 1.64
3| 64 | 11.90| 2595 | 8 3.12 4.03
4| 88| 182 | 83.18| 10 | 9.61 9.72
51| 112 | 27.87| 239.05| 12 | 19.03| 22.74
6| 136| 47.01| 608.44| 14 | 47.01| 47.90

Table 6
Comparison of learning for @c-N rule with and without alphabet refinement.
Case f CIRC-N CIRC-N + ref
[A] | Mem. | Time | |A] | Mem. | Time
Gas Station| 3 | 205 | 108.96| - 25 | 2.43 | 15.10
4 | 205| 107.00| - 25 | 3.66 | 25.90
51199 | 105.89| - 25 | 5.77 | 58.74
Chiron, 2| 259 | 78.03 - 4 0.96 | 2.71
Property 1 | 3 | 253 | 77.26 - 4 1.20 | 3.11
4| 253 | 77.90 - 4 2.21 | 3.88
5| 253 | 81.43 - 4 777 | 7.14
Chiron, 2| 67 | 10091 - | 327| 44.17| -
Property 2 | 3| 245 | 75.76 - 114 | 26.61 -
4| 245| 77.93 - 1103|2393 -
5| 245| 81.33 - 76 | 32.07| -
MER 2| 148| 597.30| - 6 189 | 151
3|281|292.01| - 8 3.53 | 4.00
4| 239| 237.22| - 10 | 9.60 | 10.64
5| 221 115.37| - 12 | 19.03| 27.56
6 | 200 | 88.00 - 14 | 47.09| 79.17
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7 Related work

Several frameworks have been proposed to support assuanargee reason-
ing [24,31,13,21]. For example, the Calvin tool [18] usesuase-guarantee rea-
soning for the analysis of Java programs, while Mocha [2]psuis modular ver-
ification of components with requirements specified basdtienAlternating-time
Temporal Logic. The practical impact of these approachedbkan limited because
they require non-trivial human input in defining appropgiassumptions.

Our previous work [20,15] proposed to use L* to automate mEsguarantee rea-
soning. Since then, several other frameworks that use LYdarning assump-
tions have been developed; [3] presents a symbolic BDD imeigation using

NuSMV [10]. This symbolic version was extended in [29] witly@ithms that

decompose models using hypergraph partitioning, to op#rttie performance of
learning on resulting decompositions. Different deconipmss are also studied
in [14] where the best two-way decompositions are computediodel-checking

with the FLAVERS [17] and LTSA tools. L* has also been usedlhtp synthe-

size interfaces for Java classes, and in [33] to check coemgaompatibility after

component updates.

Our approach for alphabet refinement is similar in spiritdéamterexample-guided
abstraction refinement (CEGAR) [11]. CEGAR computes andyaea abstrac-
tions of programs (usually using a set of abstraction pegd) and refines them
based on spurious counter-examples. However, there are saportant differ-
ences between CEGAR and our algorithm. Alphabet refinemeritsion actions
rather than predicates, it is applied compositionally inressume-guarantee style
and it computes under-approximations (of assumptionsjerathan behavioral
over-approximations (as it happens in CEGAR). In the futwe plan to inves-
tigate more the relationship between CEGAR and our algworithhe work of [23]
proposes a CEGAR approach to interface synthesis for Gridsrar his work does
not use learning, nor does it address the use of the resuftiagaces in assume-
guarantee verification.

A similar idea to our alphabet refinement for L* in the contekssume-guarantee
verification has been developed independently in [7]. Int thark, L* is started
with an empty alphabet, and, similar to our approach, theraption alphabet is
refined when a spurious counterexample is obtained. At egfalement stage, a
new minimal alphabet is computed that eliminates all spusioounterexamples
seen so far. The computation of such a minimal alphabet iisho be NP-hard.
In contrast, we use much cheaper heuristics, but do not gtesdhat the com-
puted alphabet is minimal. The approach presented in [3giores upon assume-
guarantee learning for systems that communicate basedasacsmemory, by us-
ing SAT based model checking and alphabet clustering.
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The theoretical results in [28] show that circular assuraargntee rules can not
be both sound and complete. These results do not apply te suleh as ours that
involve additional assumptions which appear only in therpses and not in the
conclusions of the rules. Note that completeness is notinedjby our framework
(however incompleteness may lead to inconclusive results)

8 Conclusions and Future Work

We have introduced a framework that uses a learning algortthsynthesize as-
sumptions that automate assume-guarantee reasoningiferdiate machines and
safety properties. The framework incorporates symmedggmmetric and circular
assume-guarantee rules and uses alphabet refinement toteosnpall assumption
alphabets that are sufficient for verification. The framdwas been applied to a
variety of systems where it showed its effectiveness.

In future work we plan to look beyond checking safety projesrand to address fur-
ther algorithmic optimization®.g, reuse of query results and learning tables across
alphabet refinement stages. Moreover, we plan to explohmigaes alternative to
learning for computing assumptionsg, we are investigating CEGAR-like tech-
niques for computing assumptions incrementally as alistrexof environments.
Finally we plan to perform more experiments to further easduour framework.
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