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Abstract

Assume-guarantee reasoning enables a “divide-and-conquer” approach to the verification
of large systems that checks system components separately while usingassumptionsabout
each component’s environment. Developing appropriate assumptions used to be a difficult
and manual process. Over the past five years, we have developed a framework for perform-
ing assume-guarantee verification of systems in an incremental and fully automated fash-
ion. The framework uses an off-the-shelf learning algorithm to compute the assumptions.
The assumptions are initially approximate and become more precise by means of coun-
terexamples obtained by model checking components separately. The framework supports
different assume-guarantee rules, both symmetric and asymmetric. Moreover, we have re-
cently introducedalphabet refinement, which extends the assumption learning process to
also inferassumption alphabets. This refinement technique starts with assumption alpha-
bets that are a subset of the minimal interface between a component and its environment,
and adds actions to it as necessary until a given property is shown to hold or to be violated in
the system. We have applied the learning framework to a number of case studies that show
that compositional verification by learning assumptions can be significantly more scalable
than non-compositional verification.

Key words: Assume-guarantee reasoning, model checking, labeled transition systems,
learning, proof rules, compositional verification, safetyproperties.

1 Introduction

Model checking is an effective technique for finding subtle errors in concurrent
systems. Given a finite model of a system and a required property of that system,
model checking determines automatically whether the property is satisfied by the
system. The cost of model checking techniques may be exponential in the size of
the system being verified, a problem known as state explosion[12]. This can make
model checking intractable for systems of realistic size.

Compositional verification techniques address the state-explosion problem by us-
ing a “divide-and-conquer” approach: properties of the system are decomposed
into properties of its components and each component is thenchecked separately.
In checking components individually, it is often necessaryto incorporate some
knowledge of the context in which each component is expectedto operate correctly.

Email addresses:Corina.S.Pasareanu@nasa.gov (Corina S. Păsăreanu),
Dimitra.Giannakopoulou@nasa.gov (Dimitra Giannakopoulou),
mg@cs.toronto.edu (Mihaela Gheorghiu Bobaru),jcobleig@cs.umass.edu
(Jamieson M. Cobleigh),howard.barringer@manchester.ac.uk (Howard
Barringer).
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Assume-guarantee reasoning [24,31] addresses this issue by usingassumptionsthat
capture the expectations that a component makes about its environment. Assump-
tions have traditionally been developed manually, which has limited the practical
impact of assume-guarantee reasoning.

To address this problem, we have proposed a framework [15] that fully automates
assume-guarantee model checking of safety properties for finite labeled transition
systems. At the heart of this framework lies an off-the-shelf learning algorithm,
namely L* [4], that is used to compute the assumptions. In oneinstantiation of this
framework, a safety propertyP is verified on a system consisting of componentsM1 andM2 by learning an assumption under whichM1 satisfiesP . This assump-
tion is then discharged by showing it is satisfied byM2. In [6] we extended the
learning framework to support a set of novel symmetric assume-guarantee rules
that are sound and complete. In all cases, this learning-based framework is guaran-
teed to terminate, either stating that the property holds for the system, or returning
a counterexample if the property is violated.

Compositional techniques have been shown particularly effective for well-
structured systems that have small interfaces between components [8,20]. Inter-
faces consist ofall communication points through which components may influ-
ence each other’s behavior. In our initial presentations ofthe framework [15,6] the
alphabets of the assumption automata includedall the actions in the component
interface. In a case study presented in [30], however, we observed that a smaller al-
phabet can be sufficient to prove a property. This smaller alphabet was determined
through manual inspection and with it, assume-guarantee reasoning achieves or-
ders of magnitude improvement over monolithic,i.e., non-compositional, model
checking [30].

Motivated by the successful use of a smaller assumption alphabet in learning, we
investigated in [19] whether the process of discovering a smaller alphabet that is
sufficient for checking the desired properties can be automated. Smaller alphabets
mean smaller interfaces among components, which may lead tosmaller assump-
tions, and hence to smaller verification problems. We developed analphabet re-
finementtechnique that extends the learning framework so that it starts with a small
subset of the interface alphabet and adds actions to it as necessary until a required
property is either shown to hold or shown to be violated by thesystem. Actions to
be added are discovered by analysis of the counterexamples obtained from model
checking the components.

The learning framework and the alphabet refinement have beenimplemented within
the LTSA model checking tool [27] and they have been effective in verifying real-
istic concurrent systems, such as the ones developed in NASAprojects. This paper
presents and expands the material presented in [15] (original learning framework
for automated assume-guarantee reasoning with an asymmetric rule), [6] (learning
for symmetric rules), and [19] (alphabet refinement for the original framework).
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In addition, we describe here a new extension that uses a circular rule, alphabet
refinement for symmetric and circular rules, and present newexperimental data.

The rest of the paper is organized as follows. Section 2 provides background on
labeled transition systems, finite-state machines, assume-guarantee reasoning, and
the L* algorithm. Section 3 follows with a presentation of the learning framework
that automates assume-guarantee reasoning for asymmetricand circular rules. Sec-
tion 4 presents the extension of the framework with symmetric rules, followed by
Section 5 which presents the algorithm for interface alphabet refinement. Section 6
provides an experimental evaluation of the described techniques. Section 7 surveys
related work and Section 8 concludes the paper.

2 Preliminaries

In this section we give background information for our work:we introduce labeled
transition systems and finite-state machines, together with their associated opera-
tors, and also present how properties are expressed and checked in this context.
We also introduce assume-guarantee reasoning and the notion of the weakest as-
sumption. Moreover we provide a detailed description of thelearning algorithm
that we use to automate assume-guarantee reasoning. The reader may wish to skip
this section on the first reading.

2.1 Labeled Transition Systems (LTSs)

LetA
t be the universal set of observable actions and let� denote a local actionun-
observableto a component’s environment. We use� to denote a specialerror state,
which models the fact that a safety violation has occurred inthe associated transi-
tion system. We require that the error state have no outgoingtransitions. Formally,
an LTSM is a four-tuplehQ;�M; Æ; q0i where:� Q is a finite non-empty set of states� �M � A
t is a set of observable actions called thealphabetof M� Æ � Q� (�M [ f�g)�Q is a transition relation� q0 2 Q is the initial state

We use� to denote the LTShf�g;A
t; ;; �i. An LTSM = hQ;�M; Æ; q0i is non-
deterministicif it contains� -transitions or if there exists(q; a; q0); (q; a; q00) 2 Æ
such thatq0 6= q00. Otherwise,M is deterministic.

As an example, consider a simple communication channel thatconsists of two com-
ponents whose LTSs are shown in Fig. 1. Note that the initial state of all LTSs in
this paper is state0. TheInputLTS receives an input when the actioninputoccurs,
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ack

Input:

20 1

sendinput

ack

Output:

0 1 2

send output

Fig. 1. Example LTSs

and then sends it to theOutputLTS with actionsend. After being sent some data,
Outputproduces some output using the actionoutputand acknowledges that it has
finished, by using the actionack. At this point, both LTSs return to their initial
states so the process can be repeated.

2.1.1 Traces

A tracet of an LTSM is a finite sequence of observable actions that label the tran-
sitions thatM can perform starting at its initial state (ignoring the� -transitions).
For example,hinputi andhinput, sendi are both traces of theInput LTS in Fig. 1.
We sometimes abuse this notation and denote byt both a trace and its trace LTS.
For a tracet of lengthn, its trace LTS consists ofn + 1 states, where there is a
transition between statesm andm + 1 on themth action in the tracet. The set of
all traces of an LTSM is the language ofM and is denotedL (M). We denote aserrTr(M) the set of traces that lead to�, which are called theerror tracesof M .

For � � A
t, we uset�� to denote the trace obtained by removing fromt all
occurrences of actionsa =2 �. Similarly,M �� is defined to be an LTS over alpha-
bet� which is obtained fromM by renaming to� all the transitions labeled with
actions that are not in�. Let t, t0 be two traces. Let�, �0 be the sets of actions
occurring int, t0, respectively. By thesymmetric differenceof t andt0 we mean the
symmetric difference of the sets� and�0.
2.1.2 Parallel Composition

Let M = hQ;�M; Æ; q0i andM 0 = hQ0; �M 0; Æ0; q00i. We say thatM transitsintoM 0 with actiona, denotedM a�! M 0, if and only if (q0; a; q00) 2 Æ and eitherQ = Q0, �M = �M 0, andÆ = Æ0 for q00 6= �, or, in the special case whereq00 = �,M 0 = �.

The parallel composition operatork is a commutative and associative operator that
combines the behavior of two components by synchronizing the actions common to
their alphabets and interleaving the remaining actions. For example, in the parallel
composition of theInputandOutputcomponents from Fig. 1, actions send and ack
will each be synchronized while input and output will be interleaved.

Formally, letM1 = hQ1; �M1; Æ1; q10i andM2 = hQ2; �M2; Æ2; q20i be two LTSs.
If M1 = � or M2 = �, thenM1 k M2 = �. Otherwise,M1 k M2 is an LTS
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Fig. 2.Order PropertyM = hQ;�M; Æ; q0i, whereQ = Q1 �Q2, q0 = (q10; q20), �M = �M1 [ �M2, andÆ is defined as follows, wherea is either an observable action or� :M1 a�!M 01, a =2 �M2M1 kM2 a�!M 01 kM2 M2 a�!M 02, a =2 �M1M1 kM2 a�!M1 kM 02M1 a�!M 01, M2 a�!M 02, a 6= �M1 kM2 a�!M 01 kM 02
2.1.3 Properties

We call a deterministic LTS that contains no� states asafety LTS. A safety property
is specified as a safety LTSP , whose languageL (P ) defines the set of acceptable
behaviors over�P . For an LTSM and a safety LTSP such that�P � �M , we say
thatM satisfiesP , denotedM j= P , if and only if8t 2 L (M) : (t��P ) 2 L (P ).
When checking a propertyP , an error LTS denotedPerr is created, which
traps possible violations with the� state. Formally, the error LTS of a propertyP = hQ;�P; Æ; q0i isPerr = hQ [ f�g; �Perr; Æ0; q0i, where�Perr = �P andÆ0 = Æ [ f(q; a; �) j q 2 Q; a 2 �P; and�q0 2 Q : (q; a; q0) 2 Æg
Note that the error LTS iscomplete, meaning each state other than the error state
has outgoing transitions for every action in its alphabet. Also note that the error
traces ofPerr define the language ofP ’s complement (see Section 2.2.3 below).

For example, theOrderproperty shown in Fig. 2 captures a desired behavior of the
communication channel shown in Fig. 1. The property comprises states0 and1, and
the transitions denoted by solid arrows. It expresses the fact that inputs and outputs
come in matched pairs, with the input always preceding the output. The dashed
arrows illustrate the transitions to the error state that are added to the property to
obtain its error LTS,Ordererr.

To detect violations of a propertyP by a componentM , the parallel composi-
tion M k Perr is computed. It has been proved thatM violatesP if and only if
the � state is reachable inM k Perr [8]. For example, state� is not reachable in
Input k Outputk Ordererr, so we conclude thatInput k Outputj= Order.
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2.2 LTSs and Finite-State Machines

As described in Section 4, some of the assume-guarantee rules require the use of the
“complement” of an LTS. LTSs are not closed under complementation, so we need
to define here a more general class of finite-state machines (FSMs) and associated
operators for our framework.

An FSMM is a five-tuplehQ;�M; Æ; q0; F i whereQ;�M; Æ; andq0 are defined as
for LTSs, andF � Q is a set of accepting states.

For an FSMM and a tracet, we usêÆ(q; t) to denote the set of states thatM can
reach after readingt starting at stateq. A tracet is said to beacceptedby an FSMM = hQ;�M; Æ; q0; F i if Æ̂(q0; t) \ F 6= ;. Thelanguage accepted byM , denotedL (M) is the setft j Æ̂(q0; t) \ F 6= ;g.
For an FSM M = hQ;�M; Æ; q0; F i, we use LTS(M) to denote the LTShQ;�M; Æ; q0i defined by its first four fields. Note that this transformationdoes
not preserve the language of the FSM,i.e., in some casesL (M) 6= L (LTS(M)).
On the other hand, an LTS is in fact a special instance of an FSM, since it can be
viewed as an FSM for which all states are accepting. From now on, whenever we
apply operators between FSMs and LTSs, it is implied that each LTS is treated as
its corresponding FSM.

We call an FSMM deterministicif and only ifLTS(M) is deterministic.

2.2.1 Parallel Composition of FSMs

Let M1 = hQ1; �M1; Æ1; q10; F 1i andM2 = hQ2; �M2; Æ2; q20; F 2i be two FSMs.
ThenM1 kM2 is an FSMM = hQ;�M; Æ; q0; F i, where:� hQ;�M; Æ; q0i = LTS(M1) k LTS(M2), and� F = f(s1; s2) 2 Q1 �Q2 j s1 2 F 1 ands2 2 F 2g.
Note 1L (M1 kM2) = ft j t��M1 2 L (M1)^ t��M2 2 L (M2)^ t 2 (�M1 [�M2)�g
2.2.2 Properties

For FSMsM andP where�P � �M , M j= P if and only if8t 2 L (M) : t��P 2 L (P )
7



2.2.3 Complementation

The complement of an FSM (or an LTS)M , denoted
oM , is an FSM that accepts
the complement ofM ’s language. It is constructed by first makingM determinis-
tic, subsequently completing it with respect to�M , and finally turning all accepting
states into non-accepting ones, and vice-versa. An automaton is complete with re-
spect to some alphabet if every state has an outgoing transition for each action in
the alphabet. Completion typically introduces a non-accepting state and appropriate
transitions to that state.

2.3 Assume-Guarantee Reasoning

2.3.1 Assume-Guarantee Triples

In the assume-guarantee paradigm a formula is a triplehAiM hP i, whereM is a
component,P is a property, andA is an assumption aboutM ’s environment. The
formula is true if wheneverM is part of a system satisfyingA, then the system
must also guaranteeP [21,31], i.e., 8E, E k M j= A impliesE k M j= P . For
LTSM and safety LTSsA andP , checkinghAiM hP i reduces to checking if state� is reachable inA kM k Perr. Note that when�P � �A[�M , this is equivalent
toA kM j= P . Also note that we assume thatM contains no� states.

Theorem 1 hAiM hP i is true if and only if� is unreachable inA kM k Perr.

PROOF.� “)”: AssumehAiM hP i is true. We show that� is unreachable inA kM k Perr

by contradiction. Assume� is reachable inA kM k Perr by a tracet. As a re-
sult, t��A 2 L (A), t��M 2 L (M), andt��P 2 errTr(Perr) (see Note 1 on
page 7).

Let E be the trace LTS for the tracet��A, with its alphabet augmented
so thatE kM j= A andE kM j= P are well defined,i.e., �A � (�M [ �E)
and �P � (�M [ �E). By construction,L (E) consists oft��A and all of
its prefixes. Sincet��A 2 L (A), we can conclude thatE j= A. As a result,E kM j= A.

From our hypothesis thathAiM hP i is true, it follows thatE kM j= A
implies E kM j= P . However, t��E 2 L (E), t��M 2 L (M), andt��P 2 errTr(Perr). Moreover t’s actions belong to�E [ �M [ �P .
Therefore� is reachable inE kM k Perr on trace t. As a result, we can
conclude thatE kM 6j= P , which is a contradiction. Thus,� is not reachable inA kM k Perr, as desired.
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� “(”: Assume � is unreachable inA kM k Perr. We show thathAiM hP i
by contradiction. AssumehAiM hP i is not true, i.e., assume9E such thatE kM j= A butE kM 6j= P . (Again, we assume that�E is such thatj= is well
defined in the previous sentence.)

SinceE kM 6j= P then � is reachable inE kM k Perr by some tracet.
As a result,t��E 2 L (E), t��M 2 L (M), and t��P 2 errTr(Perr). SinceE kM j= A and�A � �E [ �M , it follows thatt��A 2 L (A). As a result,�
is reachable inA kM k Perr by t�(�A [ �M [ �P ), which is a contradiction.
Thus,hAiM hP i is true, as desired.2

2.3.2 Weakest Assumption

A central notion of our work is that of theweakest assumption[20], defined for-
mally here.

Definition 2 (Weakest Assumption for�) Let M1 be an LTS for a component,P be a safety LTS for a property required ofM1, and� be the interface of the
component to the environment. The weakest assumptionAw;� of M1 for � and
for propertyP is a deterministic LTS such that: 1)�Aw;� = �, and 2) for any
componentM2, htrueiM1 k (M2 ��) hP i if and only ifhtrueiM2 hAw;�i
The notion of a weakest assumption depends on the interface between the compo-
nent and its environment. Accordingly, in the second condition above, projectingM2 onto� forcesM2 to communicate withM1 only through actions in�. In [20]
we showed that weakest assumptions exist for components expressed as LTSs and
properties expressed as safety LTSs. Additionally, we provided an algorithm for
computing weakest assumptions.

The definition above refers toanyenvironment componentM2 that interacts with
componentM1 via an alphabet�. WhenM2 is given, there is a natural notion of
the completeinterfacebetweenM1 and its environmentM2, when propertyP is
checked.

Definition 3 (Interface Alphabet) Let M1 and M2 be component LTSs, andP be a safety LTS. The interface alphabet�I of M1 is defined as:�I = (�M1 [ �P ) \ �M2.
Definition 4 (Weakest Assumption) GivenM1, M2, andP as above, the weakest
assumptionAw is defined asAw;�I .
Note that from the above definitions, it follows thathtrueiM1 kM2 hP i if and only
if htrueiM2 hAwi. The following lemma will be used later in the paper.

Lemma 5 GivenM1, P , and� as above, thenhAw;�iM1 hP i holds.
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(1) LetS = E = f�g
loopf

(2) UpdateT using queries
while (S;E; T ) is not closedf

(3) Addsa to S to makeS closed wheres 2 S anda 2 �
(4) UpdateT using queriesg
(5) Construct candidate DFSMC from (S;E; T )
(6) Make the conjectureC
(7) if C is correct returnC

else
(8) Adde 2 �� that witnesses the counterexample toEg

Fig. 3. The L* Algorithm

PROOF. Aw;� �� = Aw;�. If in Definition 2 we substituteAw;� for M2, we ob-
tain that:htrueiM1 k Aw;� hP i if and only if htruei Aw;� hAw;�i. But the latter
holds trivially, so we conclude thathtrueiM1 k Aw;� hP i, which is equivalent tohAw;�iM1 hP i, always holds. 2
2.4 The L* Learning Algorithm

The learning algorithm L* was developed by Angluin [4] and later improved by
Rivest and Schapire [32]. L* learns an unknown regular languageU over alphabet� and produces a deterministic finite-state machine (DFSM) that accepts it. L*
interacts with aMinimally Adequate Teacher, henceforth referred to as theTeacher,
that answers two types of questions. The first type is a membershipquery, in which
L* asks whether a strings 2 �� is inU . The second type is aconjecture, in which
L* asks whether a conjectured DFSMC is such thatL (C) = U . If L (C) 6= U the
Teacher returns a counterexample, which is a strings in the symmetric difference
of L (C) andU .

At the implementation level, L* creates a table where it incrementally records
whether strings in�� belong toU . It does this by making membership queries
to the Teacher. At various stages L* decides to make a conjecture. It constructs a
candidate automatonC based on the information contained in the table and asks the
Teacher whether the conjecture is correct. If it is, the algorithm terminates. Other-
wise, L* uses the counterexample returned by the Teacher to extend the table with
strings that witness differences betweenL (C) andU .
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2.4.1 Details of L*

In the following more detailed presentation of the algorithm, line numbers re-
fer to L*’s illustration in Fig. 3. L* builds the observationtable(S;E; T ) whereS andE are a set of prefixes and suffixes, respectively, both over��. In addi-
tion, T is a function mapping(S [ S � �) � E to ftrue; falseg, where the oper-
ator “�” is defined as follows. Given two sets of sequences of actionsP andQ,P �Q = fpq j p 2 P andq 2 Qg, wherepq represents the concatenation of the se-
quencesp and q. Initially, L* sets S andE to f�g (line 1), where� represents
the empty string. Subsequently, it updates the functionT by making membership
queries so that it has a mapping for every string in(S [ S � �) � E (line 2). It then
checks whether the observation table isclosed, i.e., whether8s 2 S; 8a 2 �; 9s0 2 S; 8e 2 E : T (sae) = T (s0e)
If (S;E; T ) is not closed, thensa is added toS wheres 2 S anda 2 � are the
elements for which there is nos0 2 S (line 3). Oncesa has been added toS, T
needs to be updated (line 4). Lines 3 and 4 are repeated until(S;E; T ) is closed.

Once the observation table is closed, a candidate DFSMC = hQ;�C; Æ; q0; F i is
constructed (line 5), with statesQ = S, initial stateq0 = �, and alphabet�C = �,
where� is the alphabet of the unknown languageU . The setF consists of the statess 2 S such thatT (s) = true. The transition relationÆ is defined asÆ(s; a) = s0
where8e 2 E : T (sae) = T (s0e). Such ans0 is guaranteed to exist when(S;E; T )
is closed. The DFSMC is presented as a conjecture to the Teacher (line 6). If the
conjecture is correct,i.e., if L (C) = U , L* returnsC as correct (line 7), otherwise
it receives a counterexample
 2 �� from the Teacher.

The counterexample
 is analyzed using a process described below to find a suffixe of 
 that witnesses a difference betweenL (C) andU (line 8). Suffixe must be
such that adding it toE will cause the next conjectured automaton to reflect this
difference. Oncee has been added toE, L* iterates the entire process by looping
around to line 2.

As stated previously, on line 8 L* must analyze the counterexample
 to find a suffixe of 
 that witnesses a difference betweenL (C) andU . This is done by finding the
earliest point in
 at which the conjectured automaton and the automaton that would
recognize the languageU diverge in behavior. This point found by determining
where�i 6= �i+1, where�i is computed as follows:

(1) Let p be the sequence of actions made up of the firsti actions in
. Let r be
the sequence made up of the actions after the firsti actions in
. Thus,
 = pr.

(2) RunC on p. This movesC into some stateq. By construction, this stateq
corresponds to a rows 2 S of the observation table.

(3) Perform a query on the actions sequencesr.
(4) Return the result of the membership query as�i.

11



By using binary search, the point where�i 6= �i+1 can be found inO (log j
j)
queries, wherej
j is the length of
.
2.4.2 Characteristics of L*

L* is guaranteed to terminate with a minimal automatonM for the unknown lan-
guageU . Moreover, for each closed observation table(S;E; T ), the candidate
DFSM C that L* constructs is smallest, in the sense that any other DFSM con-
sistent2 with the functionT has at least as many states asC. This characteristic
of L* makes it particularly attractive for our framework. The conjectures made by
L* strictly increase in size; each conjecture is smaller than the next one, and all
incorrect conjectures are smaller thanM . Therefore, ifM hasn states, L* makes
at most(n� 1) incorrect conjectures. The number of membership queries made by
L* is O (kn2 + n logm), wherek is the size of the alphabet ofU , n is the number
of states in the minimal DFSM forU , andm is the length of the longest counterex-
ample returned when a conjecture is made.

3 Learning for Assume-Guarantee Reasoning

In this section we introduce a simple, asymmetric assume-guarantee rule and we
describe a framework which uses L* to learn assumptions thatautomate reasoning
about two components based on this rule. We also discuss how the framework has
been extended to reason aboutn components and to use circular rules.

3.1 Assume-Guarantee RuleASYM

Our framework incorporates a number of symmetric and asymmetric rules for
assume-guarantee reasoning. The simplest assume-guarantee proof is for checking
a propertyP on a system with two componentsM1 andM2 and is as follows [21]:

Rule ASYM 1 : hAiM1 hP i2 : htrueiM2 hAihtrueiM1 kM2 hP i
In this rule,A denotes an assumption about the environment in whichM1 is placed.
Soundness of the rule follows fromhtrueiM2 hAi implieshtrueiM1 kM2 hAi and2 A DFSMC is consistent with functionT if, for every t in (S [ S � �) � E, t 2 L (C) if
and only ifT (t) = true.
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htruei M1jjM2 hP i is true

conjecture:A
LTSA: ht��iM1 hP i

false and
counterexample
returnt��

Oracle 2:htrueiM2 hAi Output:

(assumptionA)

true

returnt��
Oracle 1:hAiM1 hP i

false and
counterexamplettrue

query: tracetreturn true

return false

Inputs:M1;M2; P;�

true

Teacher

Analysis
Counterexample

false

truehti M1 hP i
L*

counterexampletfalse and

Output:htruei M1jjM2 hP i is false
(counterexample
)

Fig. 4. Learning framework for rule ASYM

from the definition of assume-guarantee triples. Completeness holds trivially, by
substitutingM2 for A.

Note that the rule is not symmetric in its use of the two components, and does
not support circularity. Despite its simplicity, our experience with applying com-
positional verification to several applications has shown it to be most useful in the
context of checking safety properties.

For the use of rule ASYM to be justified, the assumption must be more abstract thanM2, but still reflectM2’s behavior. Additionally, an appropriate assumption for the
rule needs to be strong enough forM1 to satisfyP in premise 1. Developing such an
assumption is difficult to do manually. In the following, we describe a framework
that uses L* to learn assumptions automatically.

3.2 Learning Framework for RuleASYM

To learn assumptions, L* needs to be supplied with a Teacher capable of answering
queries and conjectures. We use the LTSA model checker to answer both of these
questions. The learning framework for rule ASYM is shown in Fig. 4. The alpha-
bet of the learned assumption is� = �I . As a result, the sequence of automata
conjectured by L* converges to the weakest assumptionAw.
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3.2.1 The Teacher

To explain how the teacher answers queries and conjectures we use the following
lemma.

Lemma 6 Let t 2 ��. Thent 2 L (Aw) if and only if htiM1 hP i holds. In the
assume-guarantee triple, we treatt as its corresponding trace LTS with the alpha-
bet set to�.

PROOF. By Theorem 1,htiM1 hP i holds if and only if� is unreachable int kM1 k Perr, which is equivalent to checkinghtrueiM1 k t hP i. By Defini-
tion 2, this is the same as checkinghtruei t hAwi, which is equivalent to checkingt 2 L (Aw). 2
Answering Queries Recall that L* makes a query by asking whether a tracet
is in the language being learned, which isL (Aw). The Teacher must return true
if t is in L (Aw) and false otherwise. To answer a query, the Teacher uses LTSA
to checkhtiM1 hP i (heret is treated as a trace LTS and its alphabet is�). From
Lemma 6 it follows if this check is false, thent 62 L (Aw) and false is returned to
L*. Otherwise,t 2 L (Aw) and true is returned to L*.

Answering Conjectures A conjecture consists of an FSM that L* believes will
recognize the language being learned. The Teacher must return true if the conjec-
ture is correct. Otherwise, the Teacher must return false and a counterexample that
witnesses an error in the conjectured FSM,i.e., a trace in the symmetric differ-
ence of the language being learned and that of the conjectured automaton. In our
framework, the conjectured FSM is an assumption that is being used to complete an
assume-guarantee proof. We treat the conjectured FSM as an LTS, as described in
Section 2.2, which we denote as the LTSA. To answer the conjecture, the Teacher
uses two oracles:� Oracle 1guides L* towards a conjecture that makes premise 1 of rule ASYM

true. It checkshAiM1 hP i and if the result is false, then a counterexamplet is
produced. Since thehAiM1 hP i is false, we know thatt�� 2 L (A). But, since� is reachable int�� kM1 k Perr, by Lemma 6 we know thatt�� 62 L (Aw).
Thus,t�� witnesses a difference betweenA andAw so it is returned to L* to
answer the conjecture. If the triple is true, then the Teacher moves on to Oracle 2.� Oracle 2is invoked to check premise 2 of rule ASYM , i.e., to dischargeA onM2
by verifying thathtrueiM2 hAi is true. This triple is checked and if it is true,
then the assumption makes both premises true and thus, the assume-guarantee
rule guarantees thathtrueiM1 kM2 hP i is true. The Teacher then returns true
and the computed assumptionA. Note thatA is not necessarilyAw, it can be
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strongerthanAw, i.e., L (A) � L (Aw), but the computed assumption is suffi-
cient to prove that the property holds. If the triple is not true, then a counterex-
amplet is produced. In this case further analysis is needed to determine if eitherP is indeed violated byM1 kM2 or if A is not precise enough, in which caseA
needs to be modified.

Counterexample analysis The counterexamplet from Oracle 2 must be ana-
lyzed to determine if it is a real counterexample,i.e., if it causesM1 kM2 to violateP . To do this, the Teacher performs a query ont��, in other words it uses LTSA
to checkht��iM1 hP i (here againt�� is treated as a trace LTS and its alphabet
is �). If this triple is true, then by Lemma 6 we know thatt�� 2 L (Aw). Since
this trace causedhtrueiM2 hAi to be false, we also know thatt�� 62 L (A), thust�� witnesses a difference betweenA andAw. Therefore,t�� is returned to L* to
answer its conjecture.

If the triple ht��iM1 hP i is false, then the model checker returns a (new) coun-
terexample
 that witnesses the violation ofP onM1 in the context oft��. With� = �I , 
 is guaranteed to be a real error trace inM1 k M2 k Perr (we will see
in Section 5 that when� is only a subset of�I , this is no longer the case). Thus,htrueiM1 kM2 hP i is false and
 is returned to the user as a counterexample.

Remarks A characteristic of L* that makes it particularly attractive for our
framework is its monotonicity. This means that the intermediate candidate assump-
tions that are generated increase in size; each assumption is smaller than the next
one. We should note, however, that there is no monotonicity at the semantic level.
If Ai is theith assumption conjectured by L*, thenjAij < jAi+1j, but it is not nec-
essarily the case thatL (Ai) � L (Ai+1).
3.2.2 Example

Given componentsInputandOutputshown in Fig. 1 and the propertyOrdershown
in Fig. 2, we will checkhtruei Input k OutputhOrderi using rule ASYM . To do this,
we setM1 = Input,M2 = Output, andP = Order. The alphabet of the interface for
this example is� = ((�Input[ �Order) \ �Output) = fsend; output; ackg.
As described, at each iteration L* updates its observation table and produces a
candidate assumption whenever the table becomes closed. The first closed ta-
ble obtained is shown in Table 1 and its associated assumption, A1, is shown in
Fig. 5. The Teacher answers conjectureA1 by first invoking Oracle 1, which checkshA1i Input hOrderi. Oracle 1 returns false, with counterexamplet = hinput, send,
ack, inputi, which describes a trace inA1 k Input k Ordererr that leads to state�.
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Table 1
MappingT1 Table 2

MappingT2E1T1 �S1 � true
output false
ack true
output falseS1 � � send true
output, ack false
output, output false
output, send false

E2T2 � ack� true trueS2 output false false
send true false
ack true true
output false false
send true false
output, ack false falseS2 � � output, output false false
output, send false false
send, ack false false
send, output true true
send, send true true

send
ack0

send

ack0 1

send

output

send

sendack

0 1
output

ack
output
send

2
sendack

send

0 1 2

ack

outputsend

3

ack
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send
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send
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send output
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Fig. 9. LTS forOutput0
The Teacher therefore returns counterexamplet�� = hsend, acki to L*, which
uses queries to again update its observation table until it is closed. From this ta-
ble, shown in Table 2, the assumptionA2, shown in Fig. 6, is constructed and
conjectured to the Teacher. This time, Oracle 1 reports thathA2i Input hOrderi is
true, meaning the assumption is not too weak. The Teacher then calls Oracle 2 to
determine ifhtruei OutputhA2i. This is also true, so the framework reports thathtruei Input k OutputhOrderi is true.

This example did not involve weakening of the assumptions produced by L*, since
the assumptionA2 was sufficient for the compositional proof. This will not always
be the case. ConsiderOutput0, shown in Fig. 9, which allows multiple send ac-
tions to occur before producing output. IfOutputwere replaced byOutput0, then
the verification process would be identical to the previous case, until Oracle 2 is
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invoked by the Teacher for conjectureA2. Oracle 2 returns thathtruei Output0 hA2i
is false, with counterexamplehsend, send, outputi. The Teacher analyzes this coun-
terexample and determines that in the context of this trace,Input does not vio-
lateOrder. This trace (projected onto�) is returned to L*, which will weaken the
conjectured assumption. The process involves two more iterations, during which
assumptionsA3 (Fig. 7) andA4 (Fig. 8), are produced. UsingA4, which is the
weakest assumptionAw, both Oracles report true, so it can be concluded thathtruei Input k Output0 hOrderi also holds.

3.2.3 Correctness and Termination

Theorem 7 Given componentsM1 and M2, and propertyP , the algorithm im-
plemented by our framework for ruleASYM terminates and correctly reports on
whetherhtrueiM1 kM2 hP i holds.

PROOF. To prove the theorem, we first argue the correctness, and thenthe termi-
nation of our algorithm.

Correctness: The Teacher in our framework uses the two premises of the assume-
guarantee rule to answer conjectures. It only reports thathtrueiM1 kM2 hP i is
true when both premises are true, and therefore correctnessis guaranteed by the
compositional rule. Our framework reports an error when it detects a tracet of M2
which, when simulated onM1, violates the property, which implies thatM1 k M2
violatesP .

Termination: At any iteration, after an assumption is conjectured, our algorithm re-
ports on whetherhtrueiM1 kM2 hP i is true and terminates, or continues by pro-
viding a counterexample to L*. By correctness of L*, we are guaranteed that if it
keeps receiving counterexamples to conjectures, it will eventually, at some itera-
tion i, produceAw. During this iteration, Oracle 1 will return true by definition ofAw. The Teacher will therefore apply Oracle 2, which will return either true and
terminate, or will return a counterexample. This counterexample represents a trace
of M2 that is not contained inL(Aw). Since, as discussed before,Aw is both nec-
essary and sufficient, analysis of the counterexample will report that this is a real
counterexample, and the algorithm will terminate.2
3.3 Generalization ton Components

We presented our approach so far to the case of two components. Assume now that a
system consists ofn � 2 components. To check if systemM1 kM2 k � � � kMn sat-
isfiesP , we decompose it into:M1 andM 02 = M2 kM3 k � � � kMn and the learn-
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ing framework is applied recursively to check the second premise of the assume-
guarantee rule.

At each recursive invocation forMj andM 0j = Mj+1 kMj+2 k � � � kMn, we solve
the following problem: find assumptionAj such that the following are both true:� hAjiMj hAj�1i and� htrueiMj+1 kMj+2 k � � � kMn hAji.
HereAj�1 is the assumption forMj�1 and plays the role of the property for the
current recursive call. Correctness and termination for this extension follows by
induction onn from Theorem 7.

3.4 Extension with a Circular Rule

Our framework can accommodate a variety of assume-guarantee rules that are
sound. Completeness of rules is required to guarantee termination. We investigate
here another rule, that is similar to ASYM but it involves some form of circular rea-
soning. This rule appeared originally in [21] (for reasoning about two components).
The rule can be extended easily to reasoning aboutn � 2 components.

Rule CIRC-N 1 : hA1iM1 hP i2 : hA2iM2 hA1i
...n : hAniMn hAn�1in+ 1 : htrueiM1 hAnihtrueiM1 kM2 k � � � kMn hP i

Soundness and completeness of this rule follow from [21]. Note that this rule is
similar to the rule ASYM applied recursively forn + 1 components, where the
first and the last component coincide (hence the term “circular”). Learning based
assume-guarantee reasoning proceeds as described in Section 3.3.

4 Learning with Symmetric Rules

Although sound and complete, the rules presented in the previous section are not
always satisfactory since they are not symmetric in the use of the components.
In [6] we proposed a set of symmetric rules that are sound and complete and we
also described their automation using learning. They are symmetric in the sense that
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they are based on establishing and discharging assumptionsfor each component at
the same time.

4.1 Symmetric Assume-Guarantee Rules

Here we present one of the rules that we found particularly effective in practice. The
rule may be used for reasoning about a system composed ofn � 2 components:M1 kM2 k � � � kMn.

Rule SYM -N 1 : hA1iM1 hP i2 : hA2iM2 hP i
...n : hAniMn hP in+ 1 : L (
oA1 k 
oA2 k � � � k 
oAn) � L (P )htrueiM1 kM2 k � � � kMn hP i

We require�P � �M1 [ �M2 [ � � � [ �Mn and that fori 2 f1; 2; : : : ng�Ai � (�M1 \ �M2 \ � � � \ �Mn) [ �P:
Informally, eachAi is a postulated environment assumption for the componentMi
to achieve to satisfy propertyP . Recall that
oAi is the complement ofAi.
Theorem 8 RuleSYM -N is sound and complete.

PROOF. To establish soundness, we show that the premises together with the
negated conclusion lead to a contradiction. Consider a trace t for which the conclu-
sion fails,i.e., t is a trace ofM1 kM2 k � � � kMn that violates propertyP , in other
wordst is not accepted byP . By the definition of parallel composition,t��M1 is
accepted byM1. Hence, by premise 1, the tracet��A1 can not be accepted byA1,
i.e., t��A1 is accepted by
oA1. Similarly, by premisei = 2 : : : n, the tracet��Ai
is accepted by
oAi. By the definition of parallel composition and the fact that an
FSM and its complement have the same alphabet,t�(�A1 [ A2 [ � � � [ An) is ac-
cepted by
oA1 k 
oA2 k � � � k 
oAn and it violatesP . But premisen+1 states that
the common traces in the complements of the assumptions belong to the language
of P . Hence we have a contradiction.

Our argument for the completeness of Rule SYM -N relies on weakest assump-
tions. To establish completeness, we assume the conclusionof the rule and show
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Fig. 10. Learning framework for rule SYM -N

that we can construct assumptions that will satisfy the premises of the rule. We
construct the weakest assumptionsAw1, Aw2; : : :Awn for M1, M2; : : :Mn, respec-
tively, to achieveP and substitute them forA1, A2; : : : An. Premises1 throughn
are satisfied. It remains to show that premisen + 1 holds. Again we proceed by
contradiction. Suppose there is a tracet in L (
oAw1 k 
oAw2 k � � � k 
oAwn) that
violatesP ; more preciselyt��P 2 L (
oP ). By definition of parallel composi-
tion, t is accepted by all
oAw1, 
oAw2; : : : 
oAwn. Furthermore, there will existt1 2 L (M1 k 
oP ) such thatt1 ��t = t, where�t is the alphabet of the assump-
tions. Similarly fori = 2 : : : n, ti 2 L (Mi k 
oP ). t1, t2; : : : tn can be combined
into tracet0 of M1 k M2 k � � � k Mn such thatt0 ��t = t. This contradicts the
assumed conclusion thatM1 k M2 k � � � k Mn satisfiesP , sincet violatesP .
Therefore, there can not be such a common tracet, and premisen+ 1 holds. 2
4.2 Learning Framework for RuleSYM -N

The framework for rule SYM -N is illustrated in Fig. 10. To obtain appropriate as-
sumptions, the framework applies the compositional rule inan iterative fashion. At
each iteration L* is used to generate appropriate assumptions for each component,
based on querying the system and on the results of the previous iteration. Each as-
sumption is then checked to establish the premises of Rule SYM -N. We use separate
instances of L* to iteratively learnAw1, Aw2; : : : Awn.

4.2.1 The Teacher

As before, we use model checking to implement the Teacher needed by L*. The
conjectures returned by L* are the intermediate assumptionsA1, A2, . . .An. The
Teacher implementsn+ 1 oracles, one for each premise in the SYM -N rule:� Oracles1; 2; : : : n guide the corresponding L* instances towards conjectures that

make the corresponding premise of rule SYM -N true. Once this is accomplished,
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� Oraclen+ 1 is invoked to check the last premise of the rule,i.e.,L (
oA1 k 
oA2 k � � � k 
oAn) � L (P )
If this is true, rule SYM -N guarantees thatM1 kM2 k � � � kMn satisfiesP .

If the result ofOraclen + 1 is false (with counterexample tracet), by counterex-
ample analysis we identify either thatP is indeed violated inM1 kM2 k � � � kMn
or that some of the candidate assumptions need to be modified.If (some of the) as-
sumptions need to be refined in the next iteration, then behaviors must be added to
those assumptions. The result will be that at least the behavior that the counterex-
ample represents will be allowed by those assumptions during the next iteration.
The new assumptions may of course be too abstract, and therefore the entire pro-
cess must be repeated.

Counterexample analysis Counterexamplet is analyzed in a way similar to the
analysis for rule ASYM , i.e., we analyzet to determine whether it indeed corre-
sponds to a violation inM1 k M2 k � � � k Mn. This is checked by simulatingt onMi k 
oP , for all i = 1 : : : n. The following cases arise:� If t is a violating trace of all componentsM1;M2; : : :Mn, thenM1 kM2 k � � � kMn indeed violatesP , which is reported to the user.� If t is not a violating trace of at least one componentMi, then we uset to weaken

the corresponding assumption(s).

4.2.2 Correctness and Termination

Theorem 9 Given componentsM1;M2; : : :Mn and propertyP , the algorithm im-
plemented by our framework for ruleSYM -N terminates and correctly reports on
whetherP holds onM1 kM2 k � � � kMn.

PROOF. Correctness: The Teacher returns true only if the premises of rule SYM -N

hold, and therefore correctness is guaranteed by the soundness of the rule. The
Teacher reports a counterexample only when it finds a trace that is violating in all
components, which implies thatM1 kM2 k � � � kMn also violatesP .

Termination: At any iteration, the Teacher reports on whether or notP holds onM1 k M2 k � � � k Mn and terminates, or continues by providing a counterexam-
ple to L*. By the correctness of L*, we are guaranteed that if it keeps receiving
counterexamples, it eventually producesAw1; Aw2; : : : Awn, respectively.

During this last iteration, premises1 throughn will hold by definition of the weak-
est assumptions. The Teacher therefore checks premisen+ 1, which either returns
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true and terminates, or returns a counterexample. Since theweakest assumptions
are used, by the completeness of the rule, we know that the counterexample analy-
sis reveals a real error, and hence the process terminates.2
5 Learning with Alphabet Refinement

In this section, we present a technique that extends the learning based assume-
guarantee reasoning framework with alphabet refinement. Wefirst illustrate the
benefits of smaller interface alphabets for assume-guarantee reasoning through a
simple client-server example from [30]. Then, we explain the effect of smaller in-
terface alphabets on learning assumptions. We then describe the alphabet refine-
ment algorithm, give its properties, and discuss how it extends to reasoning aboutn components as well as to circular and symmetric rules.

5.1 Example

Consider a system consisting of aservercomponent and two identicalclient com-
ponents that communicate through shared actions. Each client sendsrequestsfor
reservations to use a common resource, waits for the server to grant the reserva-
tion, uses the resource, and thencancelsthe reservation. For example, the LTS of a
client is shown in Fig. 11, wherei = 1; 2. The server, shown in Fig. 13 cangrantor
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denya request, ensuring that the resource is used only by one client at a time. We
are interested in checking the mutual exclusion property illustrated in Fig. 12, that
captures a desired behavior of the client-server application.

To check the property compositionally, assume that we decompose the sys-
tem as:M1 = Client1 k Client2 and M2 = Server. The completealphabet of
the interface betweenM1 k P and M2 (see Fig. 14) is:�I = fclient1.cancel,
client1.grant, client1.deny, client1.request, client2.cancel, client2.grant, client2.deny,
client2.requestg.
Using this alphabet and the learning framework in Section 3,an assumption with
eight states is learned, shown in Fig. 16. However, a (much) smaller assumption
is sufficient for proving the mutual exclusion property. With the assumption alpha-
bet� = fclient1.cancel, client1.grant, client2.cancel, client2.grantg, which is a strict
subset of�I (and, in fact, the alphabet of the property), a three-state assumption
is learned, shown in Fig. 15. This smaller assumption enables more efficient verifi-
cation than the eight state assumption obtained with the complete alphabet. In the
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following section, we present an extension of the learning framework that infers
automatically smaller interface alphabets (and the corresponding assumptions).

5.2 Learning Based Assume-Guarantee Reasoning and Small Interface Alphabets

Before describing the alphabet refinement algorithm, let usfirst consider the effect
of smaller interface alphabets on our learning framework. LetM1 andM2 be com-
ponents,P be a property,�I be the interface alphabet, and� be an alphabet such
that� � �I . Suppose that we use the learning framework of Section 3 but we now
set this smaller� to be the alphabet that the framework uses when learning the
assumption. From the correctness of the assume-guarantee rule, if the framework
reports true,htrueiM1 kM2 hP i. When it reports false, it is because it finds a tracet in M2 that falsifiesht��iM1 hP i. This, however, does not necessarily mean thatM1 kM2 violatesP . Real violations are discovered by our original framework only
when the alphabet is�I , and are tracest0 of M2 that falsifyht0 ��IiM1 hP i. In the
assume-guarantee triples,t�� andt0 ��I are trace LTSs with alphabets� and�I ,
respectively.

Consider again the client-server example. Assume� = fclient1.cancel, client1.grant,
client2.grantg, which is a strict subset of�I . Learning with� produces trace:t =hclient2.request, client2.grant, client2.cancel, client1.request, client1.granti. Projected
to �, this becomest�� = hclient2.grant; client1.granti. In the context oft��, M1
violates the property sinceClient1 k Client2 k Perr contains the following behavior.(0; 0; 0) client1.request�! (1; 0; 0) client2.request�! (1; 1; 0)

client2.grant�! (1; 2; 2) client1.grant�! (2; 2; �)
Learning therefore reports false. This behavior is not feasible, however, in the
context of t��I = hclient2.request, client2.grant, client2.cancel, client1.request,
client1.granti. This trace requires a client2.cancel action to occur before the
client1.grant action. Thus, in the context of�I the above violating behavior would
be infeasible. We conclude that when applying the learning framework with alpha-
bets smaller than�I , if true is reported then the property holds in the system, but
violations reported may be spurious.

5.3 Algorithm for Alphabet Refinement

Alphabet refinementextends the learning framework to deal with alphabets that
are smaller than�I while avoiding spurious counterexamples. The steps of the
algorithm are as follows (see Fig. 17):
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(1) Initialize � such that� � �I .
(2) Use the classic learning framework for�. If the framework returns true, then

report true and STOP. If the framework returns false with counterexamples

andt, go to the next step.

(3) Performextended counterexample analysiswith 
 andt. If 
 is a real coun-
terexample, then report false and STOP. If
 is spurious, thenrefine �, which
consists of adding actions to� from �I . Go to step 2.

When spurious counterexamples are detected, the Refiner extends the alphabet with
actions from the alphabet of the weakest assumption and the learning of assump-
tions is restarted. In the worst case,�I is reached and, as proven in our previous
work, learning then only reports real counterexamples. Thehighlighted steps in the
above high-level algorithm are further specified next.

Alphabet initialization The correctness of our algorithm is insensitive to the initial
alphabet. We set the initial alphabet to those actions in thealphabet of the property
that are also in�I , i.e., �P \ �I . The intuition is that these interface actions are
likely to be significant in proving the property, since they are involved in its defini-
tion. A good initial guess of the alphabet may achieve big savings in terms of time
since it results in fewer refinement iterations.

Extended counterexample analysisAn additional counterexample analysis is ap-
pended to the original learning framework as illustrated inFig. 17. The steps of
this analysis are outlined in Fig. 18. The extension takes asinputs both the coun-
terexamplet returned by Oracle 2, and the counterexample
 that is returned by the
original counterexample analysis. We modified the “classic” learning framework
(Fig. 4) to return both
 and t to be used in alphabet refinement (as explained be-
low). As discussed,
 is obtained becauseht��iM1 hP i does not hold. The next
step is to check whether in factt uncovers a real violation in the system. As illus-
trated by the client-server example, the results of checkingM1 k Perr in the context
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of t projected to different alphabets may be different. The correct (non-spurious)
results are obtained by projectingt on the alphabet�I of the weakest assumption.
Counterexample analysis therefore calls LTSA to checkht��IiM1 hP i. If LTSA
finds an error, the resulting counterexample
 is real. If error is not reached, then
the counterexample is spurious and the alphabet� needs to be refined. Refinement
proceeds as described next.

Alphabet refinement When spurious counterexamples are detected, we need to
augment the current alphabet� so that these counterexamples are eventually elim-
inated. A counterexample
 is spurious if in the context oft��I it would not be
obtained. Our refinement heuristics are therefore based on comparing
 andt��I
to discover actions in�I to be added to the learning alphabet (for this reason
 is
also projected on�I in the refinement process). We have currently implemented
the following heuristics:

AllDiff: adds all the actions in the symmetric difference oft��I and 
��I . A
potential problem of this heuristic is that it may add too many actions too soon. If
it happens to add useful actions, however, it may terminate after a small number
of iterations.

Forward: scans the tracest��I and
��I in parallel from beginning to end look-
ing for the first indexi where they disagree; if such ani is found, both actionst��I(i); 
��I(i) are added to the alphabet. By adding fewer actions during each
iteration, the algorithm may end up with a smaller alphabet.But, it may take
more iterations before it does not produce a spurious result.

Backward: is similar to Forward, but scans from the end of the traces to the be-
ginning.

5.3.1 Correctness and Termination

For correctness and termination of learning with alphabet refinement, we first show
progress of refinement, meaning that at each refinement stage, new actions are dis-
covered to be added to�.

Proposition 10 (Progress of alphabet refinement)Let�I = (�M1[�P )\�M2
be the alphabet of the weakest assumption and let� � �I be that of the assumption
at the current alphabet refinement stage. Lett be a trace ofM2 k Aerr such thatt��
leads to error onM1 k Perr by an error trace
, but t��I does not lead to error
on M1 k Perr. Thent��I 6= 
��I and there exists an action in their symmetric
difference that is not in�.

PROOF. We prove by contradiction thatt��I 6= 
��I . Supposet��I = 
��I .
We know that
 is an error trace onM1 k Perr. Since actions of
 that are not in�I
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are internal toM1 k Perr, then
��I also leads to error onM1 k Perr. But thent��I
leads to error onM1 k Perr, which is a contradiction.

We now show that there exists an action in the symmetric difference betweent��I
and
��I that is not in� (this action will be added to� by alphabet refinement).
Tracet��I is t��, with some interleaved actions from�I n �. Similarly, 
��I
is t�� with some interleaved actions from�I n �, since
 is obtained by com-
posing the trace LTSt�� with M1 k Perr. Thust�� = 
��. We again proceed
by contradiction. If all the actions in the symmetric difference betweent��I and
��I were in�, we would havet��I = t�� = 
�� = 
��I , which contradictst��I 6= 
��I . 2
Correctness follows from the assume-guarantee rule and theextended counterex-
ample analysis. Termination follows from termination of the original framework,
from the progress property and also from the finiteness of�I . Moreover, from the
progress property it follows that the refinement algorithm for two components has
at mostj�I j iterations.

Theorem 11 Given componentsM1 andM2, and propertyP , L* with alphabet
refinement terminates and returns true ifM1 kM2 satisfiesP and false otherwise.

PROOF. Correctness: When the teacher returns true, then correctness is guaran-
teed by the assume-guarantee compositional rule. If the teacher returns false, the
extended counterexample analysis reports an error for a trace t of M2, such thatt��I in the context ofM1 violates the property (the same test is used in the algo-
rithm from [15]) henceM1 kM2 violates the property.

Termination: From the correctness of L*, we know that at eachrefinement stage
(with alphabet�), if L* keeps receiving counterexamples, it is guaranteed to gen-
erateAw;�. At that point, Oracle 1 will return true (from Lemma 5). Therefore,
Oracle 2 will be applied, which will return either true, and terminate, or a coun-
terexamplet. This counterexample is a trace that is not inL (Aw;�). It is either a
real counterexample (in which case the algorithm terminates) or it is a tracet such
that t�� leads to error onM1 k Perr by an error trace
, but t��I does not lead
to error onM1 k Perr. Then from Proposition 10, we know thatt��I 6= 
��I and
there exists an action in their symmetric difference that isnot in�. The Refiner will
add this action (and possibly more actions, depending on therefinement strategy)
to� and the learning algorithm is repeated for this new alphabet. Since�I is finite,
in the worst case,� grows into�I , for which termination and correctness follow
from Theorem 7. 2
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We also note a property of weakest assumptions, which statesthat by adding ac-
tions to an alphabet�, the corresponding weakest assumption becomesweaker
(i.e., contains more behaviors) than the previous one.

Proposition 12 Assume componentsM1 andM2, propertyP and the correspond-
ing interface alphabet�I . Let�;�0 be sets of actions such that:� � �0 � �I .
Then:L (Aw;�) � L (Aw;�0) � L (Aw;�I).
PROOF. Since � � �0, we know thatAw;� ��0 = Aw;�. By substituting,
in Definition 2, Aw;� for M2, we obtain that:hAw;�iM1 hP i if and only ifhtruei Aw;� hAw;�0i. From Lemma 5 we know thathAw;�iM1 hP i. Therefore,htruei Aw;� hAw;�0i holds, which implies thatL (Aw;�) � L (Aw;�0). Similarly,L (Aw;�0) � L (Aw;�I ). 2
With alphabet refinement, our framework adds actions to the alphabet, which trans-
lates into adding more behaviors to the weakest assumption that L* tries to learn.
This means that at each refinement stagei, when the learning framework is started
with a new alphabet�i such that�i�1 � �i, it will try to learn a weaker assump-
tion Aw;�i thanAw;�i�1, which was its goal in the previous stage. Moreover, all
these assumptions areunder-approximationsof the weakest assumptionAw;�I that
is necessary and sufficient to prove the desired property. Note that at each refine-
ment stage the learning framework might stop before computing the corresponding
weakest assumption. The above property allows reuse of learning results across
refinement stages (see Section 8).

5.4 Generalization ton Components

Alphabet refinement can also be used when reasoning about more than
two components using rule ASYM. Recall from Section 3 that to check
if system M1 kM2 k � � � kMn satisfiesP we decompose it into:M1 andM 02 = M2 kM3 k � � � kMn and the learning algorithm (without refinement) is in-
voked recursively for checking the second premise of the assume-guarantee rule.

Learning with alphabet refinement follows this recursion. At each recursive invoca-
tion for Mj andM 0j = Mj+1 kMj+2 k � � � kMn, we solve the following problem:
find assumptionAj and alphabet�Aj such that the rule premises hold,i.e.

Oracle 1:hAjiMj hAj�1i and

Oracle 2:htrueiMj+1 kMj+2 k � � � kMn hAji.
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HereAj�1 is the assumption forMj�1 and plays the role of the property for the
current recursive call. Thus, the alphabet of the weakest assumption for this re-
cursive invocation is�jI = (�Mj [ �Aj�1) \ (�Mj+1 [ �Mj+2 [ � � � [ �Mn). If
Oracle 2 returns a counterexample, then the counterexampleanalysis and alpha-
bet refinement proceed exactly as in the two-component case.Note that at a new
recursive call forMj with a newAj�1, the alphabet of the weakest assumption is
recomputed.

Correctness and termination of this extension follow from Theorem 11 (and from
finiteness ofn). The proof proceeds by induction onn.

5.5 Extension to Circular and Symmetric Rules

Alphabet refinement also applies to the rules CIRC-N and SYM -N. As mentioned,
CIRC-N is a special case of the recursive application of rule ASYM for n+1 compo-
nents, where the first and last component coincide. Therefore alphabet refinement
applies to CIRC-N as we described here.

For rule SYM -N, the counterexample analysis for the error tracet obtained from
checking premisen + 1 is extended for each componentMi, for i = 1 : : : n. The
extension works similarly to that for ASYM discussed earlier in this section. The
error tracet is simulated on eachMi k 
oP with the current assumption alphabet.� If t is violating for somei, then we check whethert, with the entire alphabet of

the weakest assumption fori is still violating. If it is, thent is a real error trace
for Mi. If it is not, the alphabet of the current assumption fori is refined with
actions from the alphabet of the corresponding weakest assumption.� If t is a real error trace for alli, then it is reported as a real violation of the
property on the entire system.

If alphabet refinement takes place for somei, the learning of the assumption for
this i is restarted with the refined alphabet, and premisen + 1 is re-checked with
the new learned assumption fori.
6 Experiments

We implemented learning with rules ASYM , SYM -N, CIRC-N, with and without al-
phabet refinement in LTSA and evaluated the implementationsfor checking safety
properties of various concurrent systems that we briefly describe below. The goal
of the evaluation was to assess the performance of learning,the effect of alpha-
bet refinement on learning, to compare the effect of the different rules, and to also

29



compare the scalability of compositional verification by learning to that of non-
compositional verification.

Models and properties We used the following LTSA models.Gas Station[22]
models a self-serve gas station consisting ofk customers, two pumps, and an op-
erator. Fork = 3; 4; 5, we checked that the operator correctly gives change to a
customer for the pump that he/she used.Chiron [25,5] models a graphical user in-
terface consisting ofk artists, a wrapper, a manager, a client initialization module,
a dispatcher, and two event dispatchers. Fork = 2 : : : 5, we checked two proper-
ties: the dispatcher notifies artists of an event before receiving a next event, and
the dispatcher only notifies artists of an event after it receives that event.MER[30]
models the flight software component for JPL’s Mars Exploration Rovers. It con-
tainsk users competing for resources managed by an arbiter. Fork = 2 : : : 6, we
checked that communication and driving cannot happen at thesame time as they
share common resources.Rover Executive[15] models a subsystem of the Ames
K9 Rover. The models consists of a main ‘Executive’ and an ‘ExecCondChecker’
component responsible for monitoring state conditions. Wechecked that for a spe-
cific shared variable, if the Executive reads its value, thenthe ExecCondChecker
should not read it before the Executive clears it.

Gas Station and Chiron were analyzed before, in [14], using learning-based
assume-guarantee reasoning (with ASYM and no alphabet refinement). Four prop-
erties of Gas Station and nine properties of Chiron were checked to study how
various 2-way model decompositions (i.e., grouping the modules of each analyzed
system into two “super-components”) affect the performance of learning. For most
of these properties, learning performs better than non-compositional verification
and produces small (one-state) assumptions. For some otherproperties, learning
does not perform that well, and produces much larger assumptions. To stress-test
our implementation, we selected some of the latter, more challenging properties for
our studies here.

ResultsWe performed several sets of experiments. All experiments were performed
on a Dell PC with a 2.8 GHz Intel Pentium 4 CPU and 1.0 GB RAM, running
Linux Fedora Core 4 and using Sun’s Java SDK version 1.5. The results are shown
in Tables 3, 4, 5, and 6. In the tables,jAj is themaximumassumption size reached
during learning, ‘Mem.’ is themaximummemory used by LTSA to check assume-
guarantee triples, measured in MB, and ‘Time’ is the total CPU running time, mea-
sured in seconds. Column ‘Monolithic’ reports the memory and run-time of non-
compositional model checking. We set a limit of 30 minutes for each run. The sign
‘–’ indicates that the limit of 1GB of memory or the time limithas been exceeded.
For these cases, the data is reported as it was when the limit was reached.

In Table 3, we show the performance of learning with the ASYM rule, without al-
phabet refinement, and with different alphabet refinement heuristics, for two-way
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Table 3
Comparison of learning for 2-way decompositions with ASYM , with and without alphabet
refinement.

Case k No refinement Refinement + bwd Refinement + fwd Refinement + allDiffjAj Mem. Time jAj Mem. Time jAj Mem. Time jAj Mem. Time

Gas Station 3 177 4.34 – 8 3.29 2.70 37 6.47 36.52 18 4.58 7.76
4 195 100.21 – 8 24.06 19.58 37 46.95 256.82 18 36.06 52.72
5 53 263.38 – 8 248.17 183.70 20 414.19 – 18 360.04 530.71

Chiron, 2 9 1.30 1.23 8 1.22 3.53 8 1.22 1.86 8 1.22 1.90
Property 1 3 21 5.70 5.71 20 6.10 23.82 20 6.06 7.40 20 6.06 7.77

4 39 27.10 28.00 38 44.20 154.00 38 44.20 33.13 38 44.20 35.32
5 111 569.24 607.72 110 – 300 110 – 300 110 – 300

Chiron, 2 9 1.14 1.57 3 1.05 0.73 3 1.05 0.73 3 1.05 0.74
Property 2 3 25 4.45 6.39 3 2.20 0.93 3 2.20 0.92 3 2.20 0.92

4 45 25.49 32.18 3 8.13 1.69 3 8.13 1.67 3 8.13 1.67
5 122 131.49 246.84 3 163.85 18.08 3 163.85 18.05 3 163.85 17.99

MER 2 40 6.57 7.84 6 1.78 1.01 6 1.78 1.02 6 1.78 1.01
3 377 158.97 – 8 10.56 11.86 8 10.56 11.86 8 10.56 11.85
4 38 391.24 – 10 514.41 1193.53 10 514.41 1225.95 10 514.41 1226.80

Rover Exec. 2 11 2.65 1.82 4 2.37 2.53 11 2.67 4.17 11 2.54 2.88

decompositions of the systems we studied. For Gas Station and Chiron we used
decompositions generalized from the best two-way decompositions at size 2, as
described in [14]. For Gas Station, the operator and the firstpump are one compo-
nent, and the rest of the modules are the other. For Chiron, the event dispatchers
are one component, and the rest of the modules are the other. For MER, half of the
users are in one component, and the other half with the arbiter in the other. For the
Rover we used the two components described in [15]. As these results indicate that
‘bwd’ heuristic is slightly better than the others, we used this heuristic for alphabet
refinement in the rest of the experiments.

Table 4 shows the performance of the recursive implementation of learning with
rule ASYM , with and without alphabet refinement, as well as that of monolithic
(non-compositional) verification, for increasing number of components. For these
experiments we used an additional heuristic to compute theorderingof the modules
in the sequenceM1; : : :Mn for the recursive learning, to minimize the sizes of the
interface alphabets�1I ; : : :�nI . We generated offline all possible orders with their
associated interface alphabets and then chose the order that minimizes the sumPnj=1 j�jI j. Automatic generation of orderings was not always possiblebecause of
the combinatorial explosion. In some cases with large parametern, we lifted the
results obtained for small values of the parameter on the same model to the model
with the larger parameter.

We also compared learning with and without alphabet refinement for rules SYM -N

and CIRC-N under the same conditions as in the previous experiments. The results
are in Tables 5 and 6.

DiscussionThe results overall show that rule ASYM is more effective than the other
rules and that alphabet refinement improves learning significantly.

Tables 5 and 6 indicate that generally rules SYM -N and CIRC-N do not improve the
performance of learning or the effect of alphabet refinement, but they can some-
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Table 4
Comparison of recursive learning for ASYM rule with and without alphabet refinement, and
monolithic verification.

Case k ASYM ASYM + ref MonolithicjAj Mem. Time jAj Mem. Time Mem. Time

Gas Station 3 473 109.97 – 25 2.41 13.29 1.41 0.034
4 287 203.05 – 25 3.42 22.50 2.29 0.13
5 268 283.18 – 25 5.34 46.90 6.33 0.78

Chiron, 2 352 343.62 – 4 0.93 2.38 0.88 0.041
Property 1 3 182 114.57 – 4 1.18 2.77 1.53 0.062

4 182 116.66 – 4 2.13 3.53 2.75 0.147
5 182 115.07 – 4 7.82 6.56 13.39 1.202

Chiron, 2 190 107.45 – 11 1.68 40.11 1.21 0.035
Property 2 3 245 68.15 – 114 28 – 1.63 0.072

4 245 70.26 – 103 23.81 – 2.89 0.173
5 245 76.10 – 76 32.03 – 15.70 1.53

MER 2 40 8.65 21.90 6 1.23 1.60 1.04 0.024
3 501 240.06 – 8 3.54 4.76 4.05 0.111
4 273 101.59 – 10 9.61 13.68 14.29 1.46
5 200 78.10 – 12 19.03 35.23 14.24 27.73
6 162 84.95 – 14 47.09 91.82 – 600

times handle cases which were challenging for ASYM , as is the case of SYM -N for
Chiron, property 2. Thus there is some benefit in using all of these rules.

Table 3 shows that alphabet refinement improved the assumption size in all cases,
and in a few, up to almost two orders of magnitude (see Gas Station with k =3; 4, Chiron, Property 2, withk = 5, MER with k = 3). It improved memory
consumption in 10 out of 15 cases, and also improved running time, as for Gas
Station and for MER withk = 3; 4 learning without refinement did not finish within
the time limit, whereas with refinement it did. The benefit of alphabet refinement is
even more obvious in Table 4 where ‘No refinement’ exceeded the time limit in all
but one case, whereas refinement completed in almost all cases, producing smaller
assumptions, and using less memory in all the cases, up to twoorders of magnitude
less in a few.

Table 4 indicates that learning with refinement scales better than without refine-
ment for increasing number of components. Ask increases, the memory and time
consumption for ‘Refinement’ grows slower than that of ‘Monolithic’. For Gas Sta-
tion, Chiron (Property 1), and MER, for small values ofk, ‘Refinement’ consumes
more memory than ‘Monolithic’, but ask increases the gap is narrowing, and for
the largestk ‘Refinement’ becomes better than ‘Monolithic’. This leads to cases
such as MER withk = 6 where, for a large enough parameter value, ‘Monolithic’
runs out of memory, whereas ‘Refinement’ succeeds.
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Table 5
Comparison of learning for SYM -N rule with and without alphabet refinement.

Case k SYM -N SYM -N + refjAj Mem. Time jAj Mem. Time

Gas Station 3 7 1.34 – 83 31.94 874.39
4 7 2.05 – 139 38.98 –
5 7 2.77 – 157 52.10 –

Chiron, 2 19 2.21 – 21 4.56 52.14
Property 1 3 19 2.65 – 21 4.99 65.50

4 19 4.70 – 21 6.74 70.40
5 19 17.65 – 21 28.38 249.3

Chiron, 2 7 1.16 – 8 0.93 6.35
Property 2 3 7 1.36 – 16 1.43 9.40

4 7 2.29 – 32 3.51 16.00
5 7 8.20 – 64 20.90 57.94

MER 2 40 6.56 9.00 6 1.69 1.64
3 64 11.90 25.95 8 3.12 4.03
4 88 1.82 83.18 10 9.61 9.72
5 112 27.87 239.05 12 19.03 22.74
6 136 47.01 608.44 14 47.01 47.90

Table 6
Comparison of learning for CIRC-N rule with and without alphabet refinement.

Case k CIRC-N CIRC-N + refjAj Mem. Time jAj Mem. Time

Gas Station 3 205 108.96 – 25 2.43 15.10
4 205 107.00 – 25 3.66 25.90
5 199 105.89 – 25 5.77 58.74

Chiron, 2 259 78.03 – 4 0.96 2.71
Property 1 3 253 77.26 – 4 1.20 3.11

4 253 77.90 – 4 2.21 3.88
5 253 81.43 – 4 7.77 7.14

Chiron, 2 67 100.91 – 327 44.17 –
Property 2 3 245 75.76 – 114 26.61 –

4 245 77.93 – 103 23.93 –
5 245 81.33 – 76 32.07 –

MER 2 148 597.30 – 6 1.89 1.51
3 281 292.01 – 8 3.53 4.00
4 239 237.22 – 10 9.60 10.64
5 221 115.37 – 12 19.03 27.56
6 200 88.00 – 14 47.09 79.17
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7 Related work

Several frameworks have been proposed to support assume-guarantee reason-
ing [24,31,13,21]. For example, the Calvin tool [18] uses assume-guarantee rea-
soning for the analysis of Java programs, while Mocha [2] supports modular ver-
ification of components with requirements specified based inthe Alternating-time
Temporal Logic. The practical impact of these approaches has been limited because
they require non-trivial human input in defining appropriate assumptions.

Our previous work [20,15] proposed to use L* to automate assume-guarantee rea-
soning. Since then, several other frameworks that use L* forlearning assump-
tions have been developed; [3] presents a symbolic BDD implementation using
NuSMV [10]. This symbolic version was extended in [29] with algorithms that
decompose models using hypergraph partitioning, to optimize the performance of
learning on resulting decompositions. Different decompositions are also studied
in [14] where the best two-way decompositions are computed for model-checking
with the FLAVERS [17] and LTSA tools. L* has also been used in [1] to synthe-
size interfaces for Java classes, and in [33] to check component compatibility after
component updates.

Our approach for alphabet refinement is similar in spirit to counterexample-guided
abstraction refinement (CEGAR) [11]. CEGAR computes and analyzes abstrac-
tions of programs (usually using a set of abstraction predicates) and refines them
based on spurious counter-examples. However, there are some important differ-
ences between CEGAR and our algorithm. Alphabet refinement works on actions
rather than predicates, it is applied compositionally in anassume-guarantee style
and it computes under-approximations (of assumptions) rather than behavioral
over-approximations (as it happens in CEGAR). In the future, we plan to inves-
tigate more the relationship between CEGAR and our algorithm. The work of [23]
proposes a CEGAR approach to interface synthesis for C libraries. This work does
not use learning, nor does it address the use of the resultinginterfaces in assume-
guarantee verification.

A similar idea to our alphabet refinement for L* in the contextof assume-guarantee
verification has been developed independently in [7]. In that work, L* is started
with an empty alphabet, and, similar to our approach, the assumption alphabet is
refined when a spurious counterexample is obtained. At each refinement stage, a
new minimal alphabet is computed that eliminates all spurious counterexamples
seen so far. The computation of such a minimal alphabet is shown to be NP-hard.
In contrast, we use much cheaper heuristics, but do not guarantee that the com-
puted alphabet is minimal. The approach presented in [34] improves upon assume-
guarantee learning for systems that communicate based on shared memory, by us-
ing SAT based model checking and alphabet clustering.
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The theoretical results in [28] show that circular assume-guarantee rules can not
be both sound and complete. These results do not apply to rules such as ours that
involve additional assumptions which appear only in the premises and not in the
conclusions of the rules. Note that completeness is not required by our framework
(however incompleteness may lead to inconclusive results).

8 Conclusions and Future Work

We have introduced a framework that uses a learning algorithm to synthesize as-
sumptions that automate assume-guarantee reasoning for finite-state machines and
safety properties. The framework incorporates symmetric,asymmetric and circular
assume-guarantee rules and uses alphabet refinement to compute small assumption
alphabets that are sufficient for verification. The framework has been applied to a
variety of systems where it showed its effectiveness.

In future work we plan to look beyond checking safety properties and to address fur-
ther algorithmic optimizations,e.g., reuse of query results and learning tables across
alphabet refinement stages. Moreover, we plan to explore techniques alternative to
learning for computing assumptions,e.g., we are investigating CEGAR-like tech-
niques for computing assumptions incrementally as abstractions of environments.
Finally we plan to perform more experiments to further evaluate our framework.
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